Electronic Supplementary Information

Photoinduced synthesis of C2-linked phosphine oxides via radical difunctionalization of acetylene

Kangkui Li,§ Jiazhen Deng,§ Xianyang Long and Shifa Zhu*

Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology 510640, Guangzhou, China; E-mail: zhusf@scut.edu.cn

Table of Contents

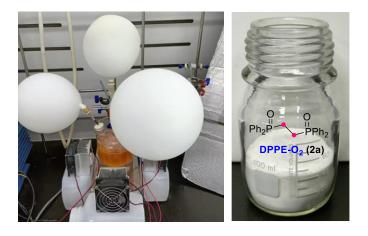
1. General information	2
2. General procedure	
3. Reaction optimization	
4. Control experiments	
5. Calculation of total yield and sustainability metrics	
6. Characterization data of products	
7. NMR spectra	
8. References	
8. References	92

[§] These authors contributed equally

1. General information

Unless stated otherwise, all reactions were carried out under 1 atm acetylene. NMR spectra were recorded on Bruker AMX 500 spectrometer at 500 MHz for ¹H NMR, 125 MHz for ¹³C NMR, 202 MHz for ³¹P NMR, 470 MHz for ¹⁹F NMR. The ¹H NMR chemical shifts were measured relative to CDCl₃ with trimethylbenzene as internal standard. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (300-400 mesh) with petroleum ether and ethyl acetate as eluents. Commercially available reagents and catalysts were purchased from Energy Chemical Ltd. or Bide Pharmatech Ltd., and were used without further purification unless indicated otherwise. The light source conditions: 10 W blue LED (460-470 nm, WP-TEC-1020HSL, made in WATTCAS, China), and maintaining a relatively constant temperature close to room temperature by regulating the condensed water.

2. General procedure


2.1 General procedure for the synthesis of product 2

$$\begin{array}{c} O \\ Ar-\overset{\mid}{PH} + H & \longrightarrow H \\ \overset{\mid}{Ar'} & 1 \text{ atm} \end{array} \begin{array}{c} Na_2\text{-eosin Y (1 mol\%)} \\ \overset{K_2CO_3 \text{ (1 eq)}}{DMF/H_2O \text{ (5:1), rt}} & Ar-\overset{\mid}{P} - Ar \\ \overset{\mid}{Ar'} & \overset{\mid}{Ar'} & \overset{\mid}{Ar'} \end{array}$$

Na₂-eosin Y (2.1 mg, 0.003 mmol, 1 mol%), K₂CO₃ (41.5 mg, 0.3 mmol, 1 eq) and phosphine oxides (0.3 mmol, 1 eq) were added sequentially to a 10 mL Schlenk tube equipped with a magnetic stir bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with acetylene for three times. Then, DMF (2.5 mL) and H₂O (0.5 mL) were subsequently added in this order. The reaction was stirred under 10 W blue LED irradiation at room temperature. The mixture was extracted with ethyl acetate and the organic phase was dried over Na₂SO₄. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give products 2 (DPPE-dioxide analogues), and the solvents is recycled. The yield of products was recorded in isolated yield.

100 mmol scale-up experiment: Na₂-eosin Y (692 mg, 1 mmol, 1 mol%), K₂CO₃ (13.82 g, 100 mmol, 1 eq) and phosphine oxides (100 mmol, 20.2 g, 1 eq) were added sequentially to a 500 mL three-necked reaction flask was equipped with a magnetic stir bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with acetylene for three times. Then, DMF (250 mL) and H₂O (50 mL) were subsequently added in this order. The reaction was stirred under blue LED (50 W * 3) irradiation at room temperature. The mixture was extracted with ethyl acetate, and washed with water, then the organic phase was dried over Na₂SO₄. The resulting solution was quickly filtered through silica gel to remove the pigment and was concentrated in vacuum. The crude product 2a was purified by recrystallization with dichloromethane/petroleum ether (15.8 g, 74% yield).

$$O_{Ph_2PH}$$
 + H \longrightarrow H O_{Ph_2PH} + H \longrightarrow H O_{Ph_2P} H O_{Ph_2P} O_{P

2.2 General procedure for the synthesis of product 3

4CzIPN (4.7 mg, 0.006 mmol, 2 mol%), K₂CO₃ (41.5 mg, 0.3 mmol, 1 eq) and phosphine oxides (0.3 mmol, 1 eq) were added sequentially to a 10 mL Schlenk tube equipped with a magnetic stir bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with acetylene for three times. Then, solvent (2.5 mL) and H₂O (0.5 mL) were subsequently added in this order. For phosphine oxides, 0.08, 0.08, 0.07, 0.06 mmol were added in batches every 7 hours. The reaction was stirred under 10 W blue LED irradiation at room temperature. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give products 3 (C2-linked oxacyclic diarylalkylphosphine oxides), and was recorded in isolated yield.

2.3 Reduction to phosphine ligands

The 10 mL flask was pumped with nitrogen for three times, **2** or **3** (0.1-0.3 mmol, 1 eq) dissolved in 1mL dry THF was added into the tube, then n-Bu₃N (0.5-1.5 mmol, 5 eq) and CH₃Cl₂SiH (0.5-3 mmol, 10 or 5 eq) were added, and the reaction was carried out at 130 °C for 12 h. The reaction mixture was then diluted with EtOAc and filtered through a short pad of silica using EtOAc. The filtrate was concentrated in vacuo before it was purified by flash chromatography (PE/EA = 20:1) on silica gel to afford products **5** or **6**.

2.4 Preparation of substrates

a) Synthesis of phosphine oxides 1a, 1e, 1g and 1j¹

A 50 mL two-necked reaction flask was equipped with a magnetic stir bar and flushed with nitrogen. Diethylphosphite (0.78 mL, 6 mmol) was added dropwise at 0 °C to a solution of phenylmagnesium bromide in THF (19.2 mmol ArMgBr). The mixture was stirred for 15-30 minutes at 0 °C, then stirred at room temperature for 16 hours. After that it was cooled again to 0 °C, and NH₄Cl aqueous was then added slowly. The mixture was extracted with EtOAc and the organic phase was washed with NaHCO₃ aqueous and brine, then it was dried over Na₂SO₄. After the solvent had been completely removed, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate = 1/1 as eluent to give the phosphine oxide substrates, and the solvents is recycled. The other symmetric phosphine oxides are commercially available. Notes: the sources of 1a include commercial purchase and preparation through the above methods; the Grignard reagents were purchased from Energy Chemical Ltd.

b) Synthesis of phosphine oxides 1k-p²

A 50 mL two-necked reaction flask was equipped with a magnetic stir bar and flushed with nitrogen. Ethyl phenylphosphinate (1.02 g, 6 mmol) was added dropwise at 0 °C to a solution of phenylmagnesium bromide in THF (9.6 mmol ArMgBr). The mixture was stirred for 15-30 minutes at 0 °C, then stirred at room temperature overnight. After that it was cooled again to 0 °C, the resulting mixture was quenched with 1 M HCl and extracted with EtOAc. The combined organic layer was dried over Na₂SO₄ and evaporated in vacuo. After the solvent had been completely removed, the residue was purified by column chromatography on silica gel using petroleum

ether/ethyl acetate = 1/1 as eluent to give the phosphine oxides 1k-p, and the solvents is recycled. Notes: the Grignard reagents were purchased from Energy Chemical Ltd.

3. Reaction optimization

Table S1. Conditions optimization^a

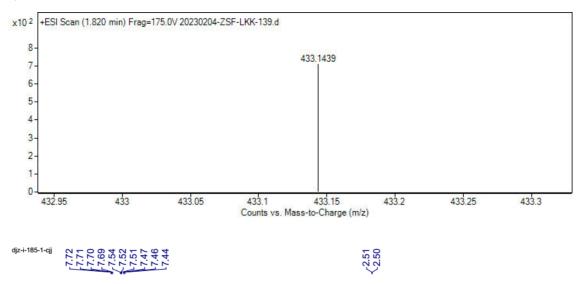
Entry	PC (2 mol%)	Base	Solvent	H ₂ O	Time	Yield (%)b	
		(1 eq)	(2.5 mL)	(mL)	(h)	2a	3a
1	Na ₂ -eosin Y	K ₂ CO ₃	THF	0.5	22	48	45
2	4CzIPN	K ₂ CO ₃	THF	0.5	20	29	53
3	Ir(ppy) ₃	K ₂ CO ₃	THF	0.5	36	11	16
4	Tetrabromofluorescein	K ₂ CO ₃	THF	0.5	28	22	35
5	Rose Bengal	K_2CO_3	THF	0.5	28	17	19
6	Na ₂ -eosin Y	K_2CO_3	CH ₃ CN	0.5	48	22	1
7	Na ₂ -eosin Y	K_2CO_3	DMF	0.5	11	72	1
8	Na ₂ -eosin Y	K_2CO_3	DMF	0.5	15	80	1
9	Na ₂ -eosin Y	K_2CO_3	DMSO	0.5	45	76	1
10	Na ₂ -eosin Y	K_2CO_3	Toluene	0.5	48	13	1
11	Na ₂ -eosin Y	1	DMF	0.5	36	trace	-
12	Na ₂ -eosin Y	$\mathrm{Et}_{3}\mathrm{N}$	DMF	0.5	36	trace	-
13	Na ₂ -eosin Y	K_2CO_3	DMF	1.0	18	74	-
14	Na ₂ -eosin Y	K_2CO_3	DMF	0.25	18	69	-
15	Na ₂ -eosin Y (1 mol%)	K_2CO_3	DMF	0.5	15	78	-
16	1	K_2CO_3	DMF	0.5	24	trace	1
17°	Na ₂ -eosin Y (1 mol%)	K_2CO_3	DMF	0.5	17	69	1
18 ^d	Na ₂ -eosin Y	K_2CO_3	THF	0.5	24	28	60
19 ^e	Na ₂ -eosin Y	K_2CO_3	THF	0.5	26	21	64
20 ^f	Na ₂ -eosin Y	K ₂ CO ₃	THF	0.5	30	10	66
21 ^f	Na ₂ -eosin Y (3 mol%)	K ₂ CO ₃	THF	0.5	32	11	67
22 ^f	4CzIPN	K ₂ CO ₃	THF	0.5	28	7	71
23 ^g	Na ₂ -eosin Y (1 mol%)	K ₂ CO ₃	DMF	0.5	15	trace	-

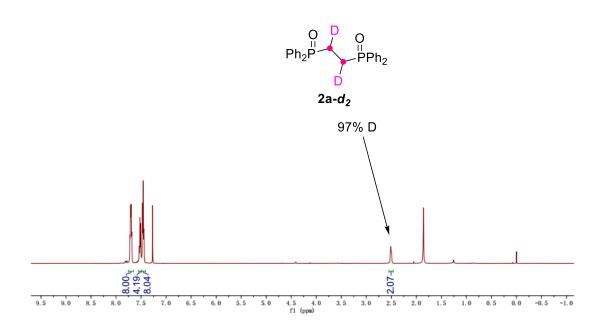
^aReaction condition: under acetylene atmosphere (1 atm), **1a** (0.3 mmol), **PC** (0.006 mmol), base (0.3 mmol), and H₂O (0.5 mL) in solvent (2.5 mL) were irradiated by blue LED (460-470 nm) at room temperature. ^bIsolated yield. ^cgreen LED (535-540 nm). ^d0.15, 0.15 mmol of **1a** were added in batches every 10 hours. ^e0.1, 0.1, 0.1 mmol of **1a** were added in batches every 8 hours. ^f0.08, 0.08, 0.07, 0.06 mmol 0f **1a** were added in batches every 7 hours. ^gNo light.

4. Control experiments

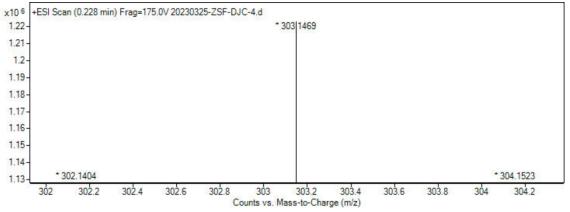
a) Control experiments with phosphinoyl ethylene

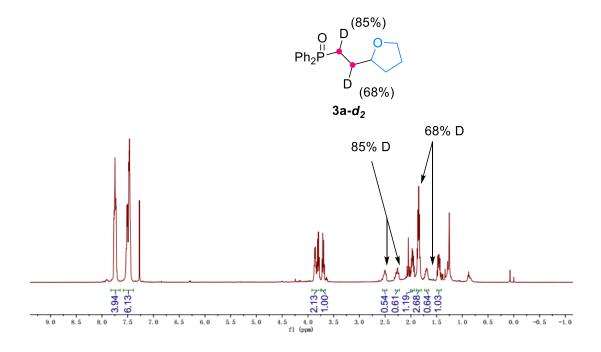
Na₂-eosin Y (1.5 mg, 0.003 mmol, 1 mol%), K₂CO₃ (27.7 mg, 0.2 mmol, 1 eq) phosphine oxides (0.24 mmol, 1.2 eq) and phosphinoyl ethylene (0.2 mmol, 1 eq) were added sequentially to a 10 mL Schlenk tube equipped with a magnetic stir bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then, DMF (1.5 mL) and H₂O (0.3 mL) were subsequently added in this order. The reaction was stirred under 10 W blue LED irradiation at room temperature. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give the product 2a in 99% isolated yield.

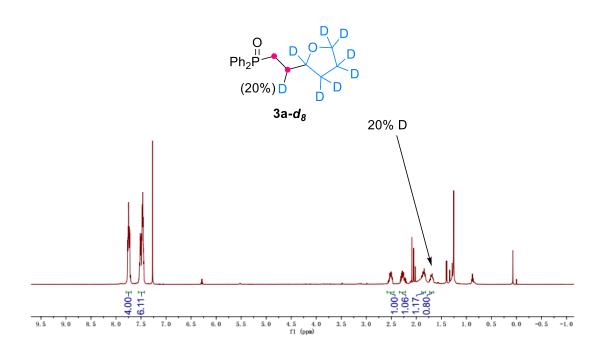

4CzIPN (4.7 mg, 0.003 mmol, 4 mol%), K₂CO₃ (41.5 mg, 0.3 mmol, 2 eq) and phosphinoyl ethylene (0.15 mmol, 1 eq) were added sequentially to a 10 mL Schlenk tube equipped with a magnetic stir bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then, THF (2.5 mL) and H₂O (0.5 mL) were subsequently added in this order. The reaction was stirred under 10 W blue LED irradiation at room temperature. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give the product 3a in 75% isolated yield.


b) Radical capture experiments with TEMPO

According to the general procedure 2, the above radical capture experiments with TEMPO (1.5 eq) were carried out, the related radical capture products **7a** and **7b** were detected by GC-MS. **7a**, m/z 357.07 (M); **7b**, m/z 228.18 (M+H⁺).


c) Deuterium-labelling experiments


According to the general procedure 2.1, D_2O was used instead of H_2O , the deuterium-labelling product $2\mathbf{a}$ - d_2 was obtained in 57% isolated yield. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, J = 11.9, 6.6 Hz, 8H), 7.52 (t, J = 7.3 Hz, 4H), 7.46 (t, J = 7.3 Hz, 8H), 2.51 (d, J = 4.1 Hz, 2H). **HRMS** (ESI) m/z: $[M + H]^+$ calcd for $C_{26}H_{23}D_2O_2P_2^+$ 433.1450; found 433.1439.



According to the general procedure 2.2, D₂O was used instead of H₂O, the deuterium-labelling product $3a-d_2$ was obtained in 21% isolated yield. ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.65 (m, 4H), 7.59 – 7.39 (m, 6H), 3.83 (ddd, J = 21.7, 13.3, 6.1 Hz, 2H), 3.70 (dd, J = 14.8, 7.3 Hz, 1H), 2.51 (t, J = 12.7 Hz, 1H), 2.26 (dd, J = 17.5, 9.5 Hz, 1H), 1.97 (dt, J = 12.5, 6.6 Hz, 1H), 1.89 – 1.80 (m, 3H), 1.71 (dd, J = 14.0, 7.2 Hz, 1H), 1.46 (td, J = 15.6, 7.7 Hz, 1H). **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₀D₂O₂P⁺ 303.1477; found 303.1469.

According to the general procedure 2.2, THF- d_8 was used instead of THF, the deuterium-labelling product **3a-** d_8 was obtained in 52% isolated yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.80 – 7.69 (m, 4H), 7.55 – 7.43 (m, 6H), 2.59 – 2.45 (m, 1H), 2.34 – 2.22 (m, 1H), 1.89 – 1.81 (m, 1H), 1.69 (ddd, J = 18.4, 8.0, 4.0 Hz, 0.8H). **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₄D₈O₂P⁺ 309.1854; found 309.1845.

5. Calculation of total yield and sustainability metrics

a) Total yield^a

$$\begin{array}{c} \text{THF} \\ \text{EtO-PH} \\ \text{R} \\ \text{Step 1} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{1}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eosin Y (1 mol\%)} \\ \text{Na}_{2}\text{-eo$$

Entry	Product	step 1 (%)	Step 2 or step 2' (%)	Total yield (%)
1	2e	84	63	53
2	2g	76	56	43
3	2j	63	30	19
4	2k	77	42	32
5	21	79	52	41
6	2m	72	58	42
7	2n	85	55	47
8	20	65	64	42
9	3e	84	54	45
10	3h	76	50	38
11	3k	63	22	14
12	31	74	41	30
13	3m	77	42	32
14	3n	79	49	39
15	30	72	45	32
16	3 p	85	50	43

^aOnly for the substrates that need to be prepared.

b) Atom economy (atom utilisation)

Atom economy =
$$\frac{FW (g/mol) product}{FW of all reactants} *100\%$$
 = $\frac{430}{202*2+26} *100\% = 100\%$ (example 1, for 2a) = $\frac{300}{202+26+72} *100\% = 100\%$ (example 2, for 3a)

c) Process mass intensity (PMI)

$$PMI_{(reaction)} = \frac{total input mass to reaction (g)}{mass of product (g)}$$

i) For the 0.3 mmol-scale reaction of 1a to 2a

$$\textbf{PMI} = \frac{60.6 \text{ mg } (\textbf{1a}) + 255 \text{ mg } (C_2H_2)^a + 2.1 \text{ mg } (Na_2\text{-eosin Y}) + 41.5 \text{ mg } (K_2CO_3) + 2370 \text{ mg } (DMF) + 500 \text{ mg } (H_2O)}{50.5 \text{ mg } (\textbf{2a})}$$

$$= \frac{3229.2}{50.5} = \textbf{63.9}$$

ii) For the 0.3 mmol-scale reaction of ${\bf 1a}$ to ${\bf 3a}$

$$PMI = \frac{60.6 \text{ mg } (1a) + 255 \text{ mg } (C_2H_2)^a + 4.7 (4CzIPN) + 41.5 \text{ mg } (K_2CO_3) + 2225 \text{ mg } (THF) + 500 \text{ mg } (H_2O)}{63.6 \text{ mg } (3a)}$$

$$= \frac{3086.8}{63.6} = 48.5$$

iii) For the 100 mmol-scale reaction of 1a to 2a

$$PMI = \frac{20.2 g (1a) + 5.4 g (C_2H_2)^a + 0.7 g (Na_2-eosin Y) + 13.8 g (K_2CO_3) + 237 g (DMF) + 50 g (H_2O)}{15.8 g (2a)}$$

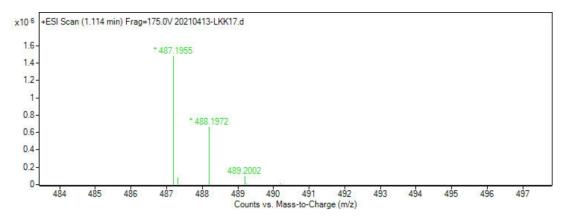
$$= \frac{327.1}{15.8} = 20.7$$

^aBased on the volume change of the acetylene balloon.

d) EcoScale of 100 mmol 1a scale-up reaction

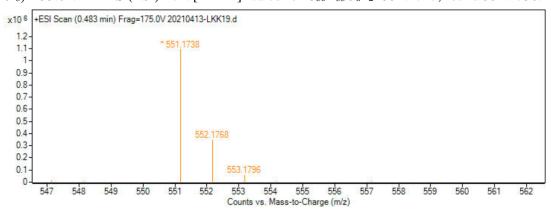
Parameter	Penalty			
1. Yield: 74%	13			
2. Price of reaction ^a : < \$10	0			
3. Safety ^b : DMF (T)	5			
Na ₂ -eosin Y (F, T)	10			
acetylene (F ⁺)	10			
4. rt, 43 h	2			
5. 1 atm	0			
6. Extraction with EtOAc	3			
7. Drying over Na ₂ SO ₄	0			
8. Crystallization and filtration	1			
Penalty points total	44			
EcoScale = 100 - Penalty points total = 56				

^aPrice of reaction components (to obtain 10 mmol of end product). ^bBased on the hazard warning symbols.


6. Characterization data of products

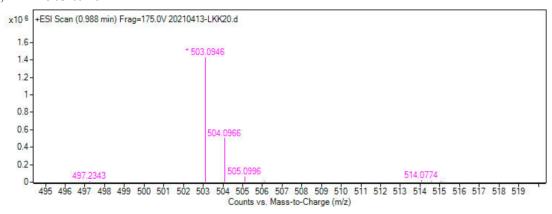
ethane-1,2-diylbis(diphenylphosphine oxide)³

White solid, 50.5 mg, 78% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.71 (s, 8H), 7.48 (d, J = 28.7 Hz, 12H), 2.53 (s, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 132.05, 131.88 (d, J = 99.6 Hz), 130.74 (t, J = 4.5 Hz), 128.82 (t, J = 5.8 Hz), δ 22.05 – 21.29 (m). ³¹**P NMR** (202 MHz, CDCl₃) δ 32.60.

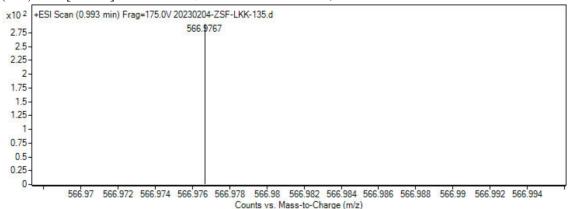

ethane-1,2-diylbis(di-p-tolylphosphine oxide)

White solid,41.3 mg, 57% yield, m.p. 225-227 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, J = 11.6, 6.9 Hz, 8H), 7.24 (d, J = 7.6 Hz, 8H), 2.46 (s, 4H), 2.36 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 142.45, 130.80 (t, J = 4.7 Hz), 129.52 (t, J = 6.0 Hz), 128.81 (d, J = 103.0 Hz), 22.19 – 21.54 (m), 21.56. ³¹P NMR (202 MHz, CDCl₃) δ 33.20. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₀H₃₃O₂P₂⁺ 487.1950; found 487.1955.

ethane-1,2-diylbis(bis(4-methoxyphenyl)phosphine oxide)


White solid, 28.9 mg, 35% yield, m.p. 149-151 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (td, J = 8.5, 6.4 Hz, 8H), 6.94 (d, J = 8.3 Hz, 8H), 3.82 (s, 12H), 2.43 (d, J = 1.7 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 162.44, 132.63 (t, J = 5.4 Hz), 123.96 – 122.78 (m), 114.35 (t, J = 6.4 Hz), 55.33, 22.64 – 21.61 (m). ³¹P NMR (202 MHz, CDCl₃) δ 33.04. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₀H₃₃O₆P₂⁺ 551.1747; found 551.1738.

ethane-1,2-diylbis(bis(4-fluorophenyl)phosphine oxide)

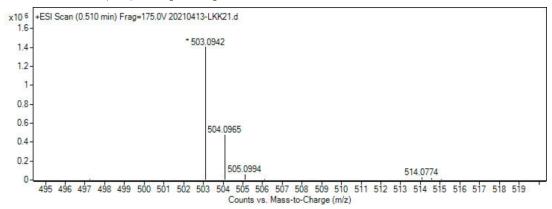

White solid, 43.7 mg, 58% yield, m.p. 211-213 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.61 (m, 8H), 7.17 (t, J = 8.4 Hz, 8H), 2.47 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 165.22 (d, J = 254.6 Hz), 133.23 (dt, J = 9.0, 5.5 Hz), 127.45 (d, J = 103.9 Hz), 116.47 (dt, J = 21.3, 6.4 Hz), 22.41 – 21.27 (m). ³¹P NMR (202 MHz, CDCl₃) δ 31.41. ¹⁹F NMR (471 MHz, CDCl₃) δ -105.64. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₁F₄O₂P₂⁺

503.0947; found 503.0946.

ethane-1,2-diylbis(bis(4-chlorophenyl)phosphine oxide)

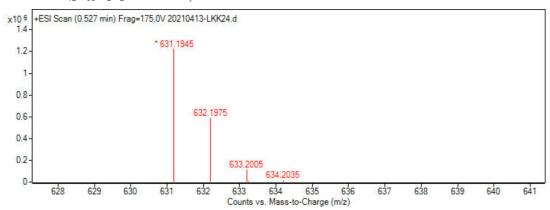
White solid, 53.5 mg, 63% yield, m.p. 228-231 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (td, J = 8.3, 6.1 Hz, 8H), 7.45 (d, J = 8.1 Hz, 8H), 2.46 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 139.14, 132.05 (t, J = 5.2 Hz), 129.81 (d, J = 100.8 Hz), 129.41 (t, J = 6.2 Hz), 24.04 – 20.36 (m). ³¹P NMR (202 MHz, CDCl₃) δ 31.29. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₁Cl₄O₂P₂⁺ 566.9765; found 566.9767.

ethane-1,2-diylbis(di-m-tolylphosphine oxide)

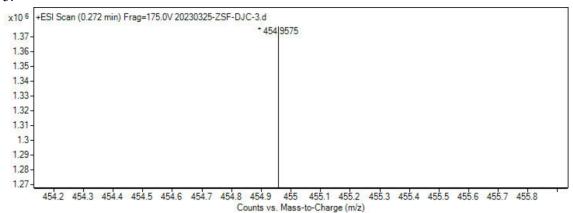

White solid, 35.4 mg, 49% yield, m.p. 150-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 4H), 7.46 (s, 4H), 7.32 (q, J = 7.8 Hz, 8H), 2.50 (s, 4H), 2.36 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 138.75 (t, J = 5.1 Hz), 132.81, 131.89 (d, J = 99.7 Hz), 131.27, 128.67 (t, J = 5.4 Hz), 127.72, 21.65 (d, J = 62.1 Hz), 21.40. ³¹P NMR (202 MHz, CDCl₃) δ 33.06. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₀H₃₃O₂P₂⁺ 487.1950; found

487.1949.

ethane-1,2-diylbis(bis(3-fluorophenyl)phosphine oxide)

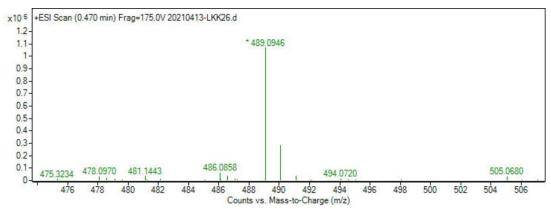

White solid, 42.1 mg, 56% yield. m.p. 150-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 15.6, 13.5 Hz, 12H), 7.27 – 7.18 (m, 4H), 2.51 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 162.76 (dt, J = 252, 7.6 Hz), 133.78 (dd, J = 100.1, 5.4 Hz), 131.16 (dd, J = 14.0, 7.2 Hz), 126.27 (dd, J = 8.1, 4.2 Hz), 119.79 (d, J = 21.1 Hz), 117.84 (dt, J = 22.3, 4.9 Hz), 22.03 – 20.92 (m). ³¹P NMR (202 MHz, CDCl₃) δ 30.67. ¹°F NMR (471 MHz, CDCl₃) δ -109.79. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₁F₄O₂P₂⁺ 503.0947; found 503.0942.

ethane-1,2-diylbis(di(naphthalen-2-yl)phosphine oxide)

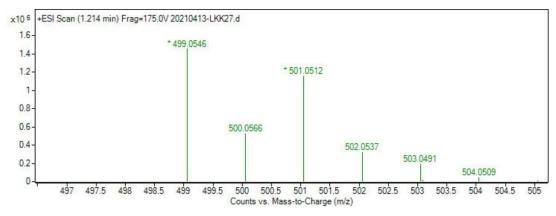

White solid, 50.9 mg, 54% yield, m.p. 155-157 °C **1H NMR** (500 MHz, CDCl₃) δ 8.47 – 8.32 (m, 4H), 7.94 – 7.77 (m, 12H), 7.65 (s, 4H), 7.55 (dt, J = 14.6, 7.0 Hz, 8H), 2.80 (s, 4H). **13C NMR** (126 MHz, CDCl₃) δ

134.75, 132.90, 132.54 (t, J = 6.3 Hz), 128.95 (d, J = 99.9 Hz), 128.93, 128.83 (t, J = 5.6 Hz), 128.31, 127.83, 127.07, 125.46 (t, J = 4.8 Hz), 22.09 – 20.99 (m). ³¹**P NMR** (202 MHz, CDCl₃) δ 33.09. **HRMS** (ESI) m/z: $[M + H]^+$ calcd for $C_{42}H_{33}O_2P_2^+$ 631.1950; found 631.1945.

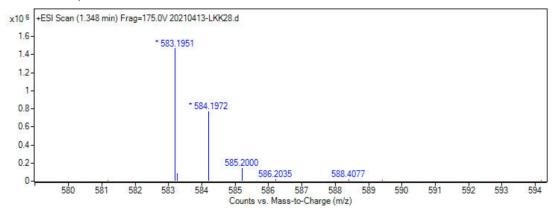
ethane-1,2-diylbis(di(thiophen-2-yl)phosphine oxide)


White solid, 81.4 mg, 30% yield, m.p. 124-126 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.69 (m, 4H), 7.58 (dd, J = 6.5, 3.3 Hz, 4H), 7.19 (t, J = 4.1 Hz, 4H), 2.61 (d, J = 2.2 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 135.75 (t, J = 5.2 Hz), 133.94 (d, J = 2.4 Hz), 133.29 – 131.94 (m), 128.61 (t, J = 7.2 Hz), 26.73 – 25.54 (m). ³¹P NMR (202 MHz, CDCl₃) δ 21.85. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₇O₂P₂S₄⁺ 454.9581; found 454.9575.

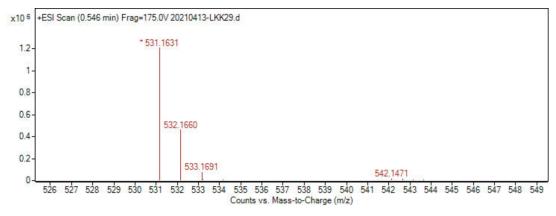
ethane-1,2-diylbis((4-fluorophenyl)(phenyl)phosphine oxide)


White solid, 31.2 mg, 42% yield, m.p. 130-133 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 8H), 7.54 (t, J = 7.2 Hz, 2H), 7.47 (t, J = 7.1 Hz, 4H), 7.15 (t, J = 7.5 Hz, 4H), 2.51 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ

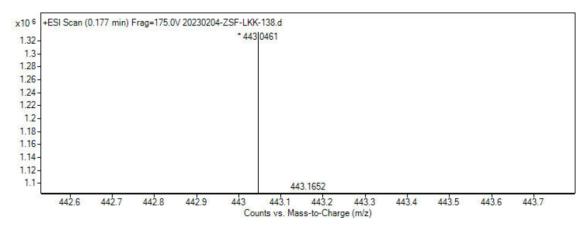
165.13 (d, J = 253.7 Hz), 133.38 – 133.22 (m), 132.28, 132.02 – 131.17 (m), 130.70 (t, J = 4.7 Hz), 128.98 (t, J = 5.9 Hz), 128.24 – 127.35 (m), 116.31 (dt, J = 21.3, 6.4 Hz), 22.27 – 21.25 (m). ³¹**P NMR** (202 MHz, CDCl₃) δ 32.18. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -106.13. **HRMS** (ESI) m/z: [M + H]⁺ calcd for $C_{26}H_{22}F_{2}NaO_{2}P_{2}^{+}$ 489.0955; found 489.0946.


ethane-1,2-diylbis((4-chlorophenyl)(phenyl)phosphine oxide)

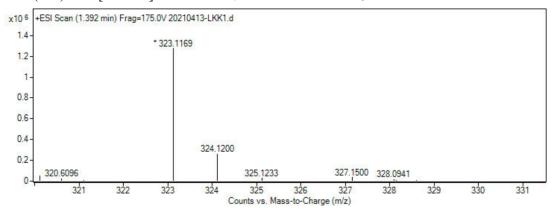
White solid, 38.4 mg, 52% yield, m.p. 221-223 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.58 (m, 8H), 7.54 (t, J = 7.2 Hz, 2H), 7.46 (dd, J = 18.6, 7.7 Hz, 8H), 2.49 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 138.83, 132.38, 132.20, 131.39 (d, J = 100.0 Hz), 130.69, 129.27 (t, J = 5.7 Hz), 129.03 (t, J = 5.4 Hz), 22.21 – 20.81 (m). ³¹P NMR (202 MHz, CDCl₃) δ 32.00. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₃Cl₂O₂P₂⁺ 499.0545; found 499.0546.


ethane-1,2-diylbis([1,1'-biphenyl]-4-yl(phenyl)phosphine oxide)

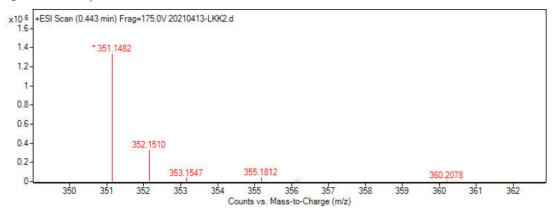
White solid, 50.3 mg, 58%, m.p. 115-116 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dt, J = 13.0, 7.3 Hz, 8H), 7.66 (d, J = 7.3 Hz, 4H), 7.59 – 7.50 (m, 6H), 7.45 (dt, J = 14.6, 7.4 Hz, 8H), 7.37 (dd, J = 8.9, 5.6 Hz, 2H), 2.59 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 144.92, 139.74, 132.12, 132.03 (d, J = 100.3 Hz), 131.34 (t, J = 4.8 Hz), 130.81 (t, J = 4.7 Hz), 130.37 (d, J = 99.6 Hz), 129.07 – 128.77 (m), 128.23, 127.53 (t, J = 6.0 Hz), 127.25, 22.31 – 21.29 (m). ³¹P NMR (202 MHz, CDCl₃) δ 32.76. HRMS (ESI) m/z: [M + H]⁺ calcd for $C_{38}H_{33}O_2P_2^+$ 583.1950; found 583.1951.


ethane-1,2-diylbis(naphthalen-2-yl(phenyl)phosphine oxide)

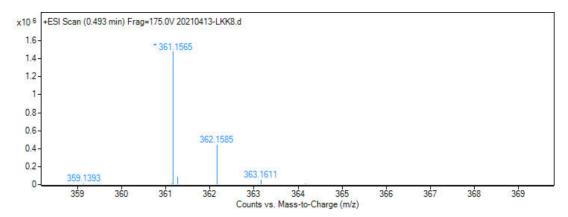
White solid, 43.5 mg, 55% yield, m.p. 148-150 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 12.3 Hz, 2H), 7.87 (ddd, J = 21.5, 14.9, 7.9 Hz, 6H), 7.74 (s, 4H), 7.66 – 7.38 (m, 12H), 2.68 (d, J = 13.4 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 134.74 (d, J = 3.8 Hz), 132.95 (t, J = 4.1 Hz), 132.60 – 132.44 (m), 132.13 (d, J = 2.5 Hz), 131.67 (d, J = 7.7 Hz), 130.83 – 130.74 (m), 129.09 (d, J = 10.2 Hz), 128.95 – 128.75 (m), 128.34 (d, J = 3.6 Hz), 127.84 (d, J = 3.0 Hz), 127.10 (d, J = 3.3 Hz), 125.41 (q, J = 5.5 Hz), 22.15 – 21.14 (m). ³¹P NMR (202 MHz, CDCl₃) δ 33.06. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₄H₂₉O₂P₂⁺ 531.1637; found 531.1631.


ethane-1,2-diylbis(phenyl(thiophen-2-yl)phosphine oxide)

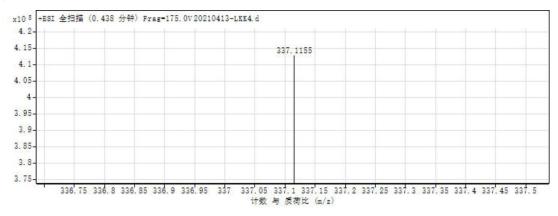
White solid, 42.3 mg, 64% yield, m.p. 147-150 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.66 (m, 6H), 7.61 – 7.41 (m, 8H), 7.18 (dt, J = 11.4, 4.0 Hz, 2H), 2.70 – 2.41 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 135.54 (q, J = 4.8 Hz), 133.63 (t, J = 1.9 Hz), 132.71 (d, J = 107.8 Hz), 132.43 (d, J = 3.5 Hz), 131.66 (d, J = 106.4 Hz), 130.68 (dd, J = 9.1, 4.7 Hz), 128.91 (dd, J = 9.9, 6.1 Hz), 128.55 (td, J = 6.8, 3.2 Hz), 24.56 – 23.40 (m). ³¹P NMR (202 MHz, CDCl₃) δ 27.56. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₂P₂S₂⁺ 443.0453; found 443.0461.


diphenyl(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

White solid, 63.6 mg, 71% yield, m.p. 93-95 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 12.8, 4.7 Hz, 4H), 7.54 – 7.39 (m, 6H), 3.86 (td, J = 11.7, 7.2 Hz, 1H), 3.80 (dd, J = 14.8, 7.0 Hz, 1H), 3.70 (dd, J = 14.7, 7.4 Hz, 1H), 2.52 (td, J = 15.0, 4.3 Hz, 1H), 2.28 (qd, J = 12.4, 4.2 Hz, 1H), 1.96 (dt, J = 12.4, 6.5 Hz, 1H), 1.91 – 1.79 (m, 3H), 1.77 – 1.66 (m, 1H), 1.50 – 1.38 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 132.96 (dd, J = 98.4, 46.8 Hz), 131.68 (d, J = 2.3 Hz), 130.77 (dd, J = 14.1, 9.2 Hz), 128.63 (d, J = 12.2 Hz), 79.15 (d, J = 14.8 Hz), 67.69, 31.01, 27.31 (d, J = 3.3 Hz), 26.51 (d, J = 72.9 Hz), 25.64. ³¹P NMR (202 MHz, CDCl₃) δ 33.02. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₂₁NaO₂P⁺ 323.1171; found 323.1169.

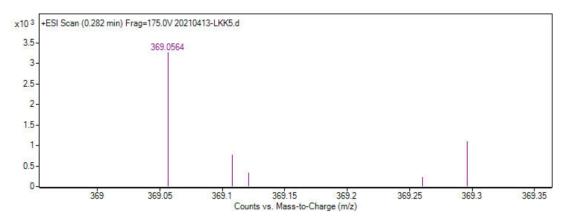

(2-(tetrahydrofuran-2-yl)ethyl)di-p-tolylphosphine oxide

Colorless liquid, 55.0 mg, 56% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.62 (t, J = 8.2 Hz, 4H), 7.26 (t, J = 8.4 Hz, 4H), 3.79 (ddq, J = 51.3, 22.0, 7.3 Hz, 3H), 2.47 (td, J = 14.9, 4.4 Hz, 1H), 2.38 (s, 6H), 2.29 – 2.16 (m, 1H), 1.96 (dt, J = 12.4, 6.6 Hz, 1H), 1.91 – 1.76 (m, 3H), 1.75 – 1.63 (m, 1H), 1.45 (td, J = 15.6, 7.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.99 (d, J = 2.6 Hz), 130.78 (dd, J = 14.4, 9.6 Hz), 130.25 (dd, J = 99.8, 49.7 Hz), 129.32 (dd, J = 12.0, 2.2 Hz), 79.27 (d, J = 14.9 Hz), 67.70, 31.03, 27.40 (d, J = 3.5 Hz), 26.67 (d, J = 73.1 Hz), 25.66, 21.54. ³¹**P NMR** (202 MHz, CDCl₃) δ 33.08. **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₀H₂₅NaO₂P⁺ 351.1484; found 531.1482.

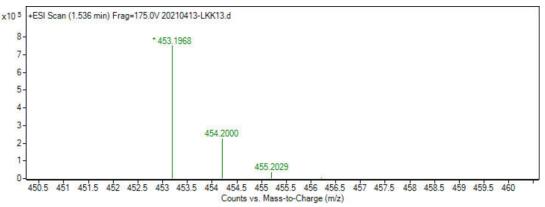

bis(4-methoxyphenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

Colorless liquid, 47.8 mg, 44% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.76 – 7.55 (m, 4H), 6.96 (ddd, J = 8.8, 3.1, 2.3 Hz, 4H), 3.88 – 3.77 (m, 8H), 3.70 (dd, J = 15.0, 7.1 Hz, 1H), 2.44 (dddd, J = 15.0, 12.3, 10.7, 4.5 Hz, 1H), 2.27 – 2.15 (m, 1H), 1.96 (ddd, J = 12.1, 10.2, 6.3 Hz, 1H), 1.90 – 1.78 (m, 3H), 1.75 – 1.64 (m, 1H), 1.45 (ddd, J = 15.6, 12.1, 7.5 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.18 (d, J = 2.8 Hz), 132.58 (dd, J = 14.3, 10.6 Hz), 124.41 (dd, J = 104.9, 51.2 Hz), 114.14 (dd, J = 12.6, 2.3 Hz), 79.24 (d, J = 15.0 Hz), 67.68, 55.29, 31.02, 27.47 (d, J = 3.5 Hz), 26.92 (d, J = 73.8 Hz), 25.65. ³¹**P NMR** (202 MHz, CDCl₃) δ 32.88. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₆O₄P⁺ 361.1563; found 561.1565.

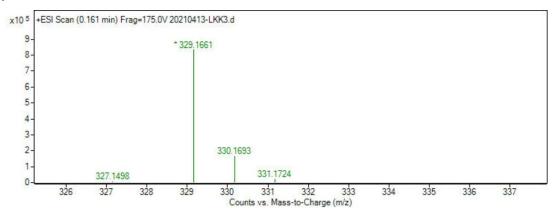
bis(4-fluorophenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide


Colorless liquid, 44.1 mg, 44% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.82 – 7.63 (m, 4H), 7.17 (tdd, J = 8.6, 3.6, 2.0 Hz, 4H), 3.91 – 3.76 (m, 2H), 3.70 (dd, J = 15.1, 7.1 Hz, 1H), 2.55 – 2.45 (m, 1H), 2.26 (dtd, J = 16.5, 12.2, 4.4 Hz, 1H), 1.98 (dt, J = 12.4, 6.5 Hz, 1H), 1.91 – 1.80 (m, 3H), 1.67 (tdd, J = 13.7, 8.4, 4.2 Hz, 1H), 1.45 (ddd, J = 15.5, 12.2, 7.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 164.98 (d, J = 250.3 Hz), 133.36 – 133.07 (m) 128.69 (ddd, J = 101.7, 53.9, 3.4 Hz), 116.14 (ddd, J = 21.3, 12.8, 2.7 Hz), 79.01 (d, J = 14.8 Hz), 67.75, 31.06, 27.29 (d, J = 3.6 Hz), 26.72 (d, J = 73.8 Hz), 25.67. ³¹**P NMR** (202 MHz, CDCl₃) δ 31.89. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -106.66. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₀F₂O₂P⁺ 337.1163; found 337.1155.

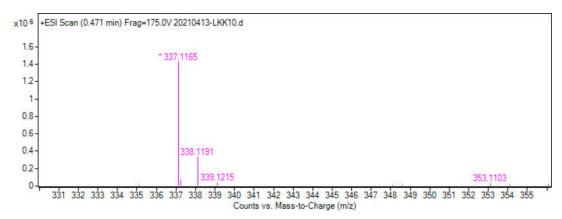
bis(4-chlorophenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide


Colorless liquid, 59.7 mg, 54% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.61 (m, 4H), 7.46 (ddd, J = 8.3,

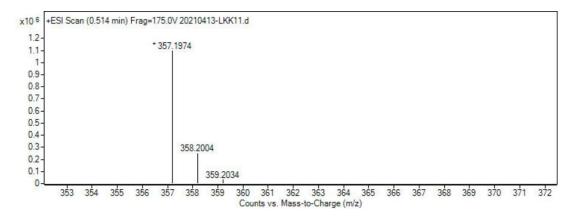
3.6, 2.2 Hz, 4H), 3.85 (ddd, J = 10.9, 7.1, 3.7 Hz, 1H), 3.80 (dd, J = 15.1, 6.9 Hz, 1H), 3.70 (dd, J = 15.1, 7.1 Hz, 1H), 2.54 – 2.46 (m, 1H), 2.33 – 2.19 (m, 1H), 1.97 (dt, J = 12.4, 6.5 Hz, 1H), 1.90 – 1.81 (m, 3H), 1.66 (dddd, J = 21.6, 12.9, 8.5, 4.4 Hz, 1H), 1.45 (ddd, J = 15.5, 12.2, 7.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.59 (d, J = 3.4 Hz), 132.12 (dd, J = 15.2, 10.2 Hz), 131.02 (dd, J = 99.8, 50.2 Hz), 129.15 (dd, J = 12.1, 2.7 Hz), 78.93 (d, J = 14.7 Hz), 67.75, 31.06, 27.21 (d, J = 3.6 Hz), 26.37 (d, J = 73.7 Hz), 25.66. ³¹**P NMR** (202 MHz, CDCl₃) δ 32.17. **HRMS** (ESI) m/z: [M + H]⁺ calcd for $C_{18}H_{20}Cl_2O_2P^+$ 369.0572; found 369.0564.


di([1,1'-biphenyl]-4-yl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

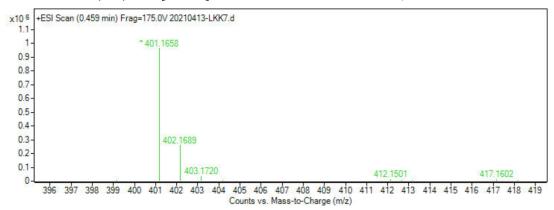
White solid, 57.6 mg, 43% yield, m.p. 168-170 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (ddd, J = 11.0, 8.3, 2.7 Hz, 4H), 7.69 (dt, J = 8.0, 2.7 Hz, 4H), 7.59 (dd, J = 7.4, 1.6 Hz, 4H), 7.45 (t, J = 7.6 Hz, 4H), 7.38 (t, J = 7.2 Hz, 2H), 3.90 (td, J = 11.5, 7.3 Hz, 1H), 3.83 (dd, J = 14.9, 6.9 Hz, 1H), 3.71 (dd, J = 14.8, 7.4 Hz, 1H), 2.66 – 2.52 (m, 1H), 2.40 – 2.29 (m, 1H), 2.02 – 1.74 (m, 5H), 1.48 (ddd, J = 15.7, 12.2, 7.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.52 (d, J = 2.1 Hz), 139.94, 131.66 (dd, J = 99.7, 48.2 Hz), 131.33 (dd, J = 14.4, 9.6 Hz), 128.94, 128.12, 127.37 (dd, J = 11.9, 1.8 Hz), 127.25, 79.25 (d, J = 14.9 Hz), 67.77, 31.09, 27.44 (d, J = 3.5 Hz), 26.73 (d, J = 73.2 Hz), 25.71. ³¹P NMR (202 MHz, CDCl₃) δ 32.66. HRMS (ESI) m/z: [M + H]⁺ calcd for $C_{30}H_{30}O_{2}P^{+}$ 453.1978; found 453.1968.


(2-(tetrahydrofuran-2-yl)ethyl)di-m-tolylphosphine oxide

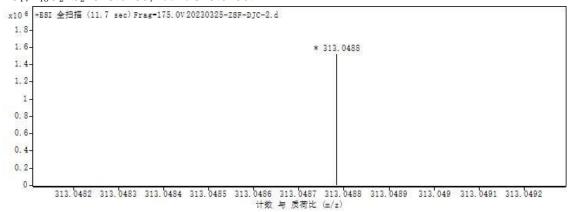
Colorless liquid, 59.3 mg, 60% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (d, J = 9.9 Hz, 2H), 7.54 – 7.42 (m, 2H), 7.38 – 7.27 (m, 4H), 3.94 – 3.62 (m, 3H), 2.50 (ddd, J = 22.0, 15.0, 4.3 Hz, 1H), 2.37 (s, 6H), 2.25 (td, J = 15.9, 4.0 Hz, 1H), 1.97 (dt, J = 12.4, 6.6 Hz, 1H), 1.92 – 1.77 (m, 3H), 1.71 (dq, J = 12.8, 8.1 Hz, 1H), 1.46 (td, J = 15.5, 7.6 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.48 (dd, J = 11.5, 2.2 Hz), 132.84 (dd, J = 98.0, 50.4 Hz), 132.43 (d, J = 2.7 Hz), 131.33 (dd, J = 16.4, 8.9 Hz), 128.45 (dd, J = 12.3, 1.4 Hz), 127.67 (dd, J = 13.4, 9.6 Hz), 79.26 (d, J = 14.9 Hz), 67.69, 31.04, 27.33 (d, J = 3.5 Hz), 26.53 (d, J = 72.7 Hz), 25.65, 21.41. ³¹**P NMR** (202 MHz, CDCl₃) δ 32.99. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₆O₂P⁺ 329.1665; found 329.1661.


bis(3-fluorophenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

Colorless liquid, 50.2 mg, 50% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.56 – 7.40 (m, 6H), 7.22 (t, J = 8.3 Hz, 2H), 3.91 – 3.77 (m, 2H), 3.71 (dd, J = 15.1, 7.1 Hz, 1H), 2.58 – 2.47 (m, 1H), 2.28 (dtd, J = 16.5, 12.2, 4.5 Hz, 1H), 1.99 (dt, J = 12.4, 6.5 Hz, 1H), 1.93 – 1.82 (m, 3H), 1.75 – 1.64 (m, 1H), 1.46 (ddd, J = 15.5, 12.2, 7.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.69 (ddd, J = 250.9, 16.4, 3.0 Hz), 135.22 (ddd, J = 97.5, 46.8, 5.5 Hz), 130.80 (ddd, J = 13.7, 7.4, 1.7 Hz), 126.36 (ddd, J = 14.7, 8.9, 3.1 Hz), 119.16 (dd, J = 21.1, 2.0 Hz), 117.73 (ddd, J = 22.5, 15.0, 10.1 Hz), 78.92 (d, J = 14.8 Hz), 67.75, 31.06, 27.18 (d, J = 3.7 Hz), 26.32 (d, J = 73.7 Hz), 25.66. ³¹**P NMR** (202 MHz, CDCl₃) δ 31.19. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -110.57 (d, J = 4.8 Hz). **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₀F₂O₂P⁺ 337.1163; found 337.1165.


bis(3,5-dimethylphenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

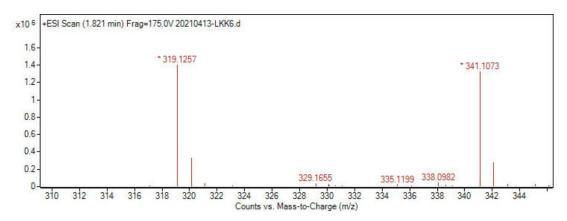
White solid, 39.3 mg, 37% yield, m.p. 70-73 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, J = 11.7 Hz, 4H), 7.11 (s, 2H), 3.87 (td, J = 11.5, 7.1 Hz, 1H), 3.81 (dd, J = 15.0, 6.9 Hz, 1H), 3.71 (dd, J = 14.6, 7.5 Hz, 1H), 2.48 (dddd, J = 14.8, 12.3, 10.5, 4.4 Hz, 1H), 2.33 (d, J = 1.9 Hz, 12H), 2.26 – 2.17 (m, 1H), 1.97 (ddd, J = 12.2, 10.2, 6.4 Hz, 1H), 1.90 – 1.79 (m, 3H), 1.75 – 1.64 (m, 1H), 1.46 (ddd, J = 15.6, 12.2, 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 138.24 (dd, J = 12.2, 1.3 Hz), 133.32 (d, J = 1.8 Hz), 132.89 (dd, J = 97.6, 57.4 Hz), 128.29 (dd, J = 16.3, 9.3 Hz), 79.36 (d, J = 14.9 Hz), 67.66, 31.07, 27.35 (d, J = 3.5 Hz), 26.53 (d, J = 72.5 Hz), 25.65, 21.29. ³¹P NMR (202 MHz, CDCl₃) δ 32.96. HRMS (ESI) m/z: [M + H]⁺ calcd for $C_{22}H_{30}O_2P^+$ 357.1978; found 357.1974.


di(naphthalen-2-yl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

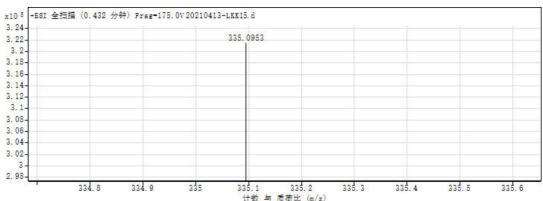
Colorless liquid, 46.7 mg, 46% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.44 (dd, J = 13.2, 7.3 Hz, 2H), 7.98 – 7.80 (m, 6H), 7.71 (t, J = 8.6 Hz, 2H), 7.57 (td, J = 14.8, 7.1 Hz, 4H), 3.91 (td, J = 11.1, 7.2 Hz, 1H), 3.81 (dd, J = 15.0, 6.9 Hz, 1H), 3.72 (dd, J = 15.0, 7.1 Hz, 1H), 2.85 – 2.63 (m, 1H), 2.54 – 2.39 (m, 1H), 1.96 (tt, J = 8.4, 5.4 Hz, 2H), 1.84 (dt, J = 13.6, 6.9 Hz, 3H), 1.46 (ddd, J = 15.4, 12.3, 7.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 134.65 (d, J = 2.3 Hz), 132.78 (dd, J = 24.1, 8.5 Hz), 132.56 (d, J = 2.3 Hz), 130.04 (dd, J = 99.0, 49.7 Hz), 128.91, 128.58 (dd, J = 11.4, 2.4 Hz), 128.13, 127.83, 126.97, 125.71 (dd, J = 10.2, 8.8 Hz), 79.26 (d, J = 14.8 Hz), 67.75, 31.13, 27.48 (d, J = 3.4 Hz), 26.42 (d, J = 73.2 Hz), 25.68. ³¹**P NMR** (202 MHz, CDCl₃) δ 33.19. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₆O₂P⁺ 401.1665; found 401.1658.

(2-(tetrahydrofuran-2-yl)ethyl)di(thiophen-2-yl)phosphine oxide

Colorless liquid, 41.4 mg, 22% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (t, J = 4.4 Hz, 2H), 7.61 (dd, J = 7.2, 3.6 Hz, 2H), 7.20 (td, J = 3.5, 1.8 Hz, 2H), 3.93 – 3.77 (m, 2H), 3.71 (dd, J = 14.6, 7.5 Hz, 1H), 2.52 (dtd, J = 16.5, 11.9, 4.7 Hz, 1H), 2.39 – 2.21 (m, 1H), 2.02 – 1.93 (m, 1H), 1.92 – 1.78 (m, 4H), 1.48 (ddd, J = 15.3, 12.0, 7.5 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 135.42 (t, J = 9.9 Hz), 134.1 (dd, J = 113.4, 32.8 Hz), 133.29 (t, J = 6.3 Hz), 128.37 (d, J = 13.9 Hz), 78.97 (d, J = 16.2 Hz), 67.78, 31.07 (d, J = 3.3 Hz), 30.77 (d, J = 80.7 Hz), 27.54 (d, J = 3.7 Hz), 25.67. ³¹P NMR (202 MHz, CDCl₃) δ 22.71. **HRMS** (ESI) m/z: [M + H]⁺ calcd for $C_{14}H_{18}O_{2}PS_{2}^{+}$ 313.0480; found 313.0488.

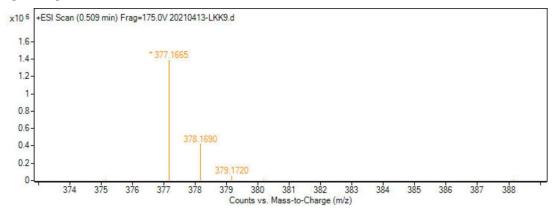

(4-methoxyphenyl)(phenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

Colorless liquid, 40.6 mg, 41% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (dddd, J = 22.7, 11.7, 5.8, 2.4 Hz, 4H), 7.47 (tt, J = 8.2, 7.1 Hz, 3H), 7.04 – 6.91 (m, 2H), 3.90 – 3.77 (m, 5H), 3.70 (dd, J = 14.7, 7.4 Hz, 1H), 2.48 (ddd, J = 15.0, 13.6, 4.4 Hz, 1H), 2.24 (ddd, J = 27.3, 12.4, 4.3 Hz, 1H), 2.01 – 1.92 (m, 1H), 1.84 (dt, J = 12.3, 6.0 Hz, 3H), 1.71 (ttd, J = 11.9, 8.0, 4.0 Hz, 1H), 1.51 – 1.39 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.32, 133.44 (dd, J = 99.0, 47.4 Hz), 132.66 (dd, J = 14.5, 10.6 Hz), 131.54 (d, J = 2.6 Hz), 130.73 (dd, J = 14.6, 9.3 Hz), 128.57 (d, J = 10.7 Hz), 123.90 (dd, J = 104.4, 52.1 Hz), 114.24 (dd, J = 12.7, 2.5 Hz), 79.22 (dd, J = 14.8, 2.2 Hz), 67.70, 55.31, 31.03 (d, J = 3.0 Hz), 27.39 (t, J = 2.7 Hz), 26.71 (dd, J = 73.4, 5.6 Hz), 25.65. ³¹**P NMR** (202 MHz, CDCl₃) δ 32.96 (d, J = 4.4 Hz). **HRMS** (ESI) m/z: [M + H]⁺ calcd for $C_{19}H_{24}O_{3}P^{+}$ 331.1458; found 331.1454.

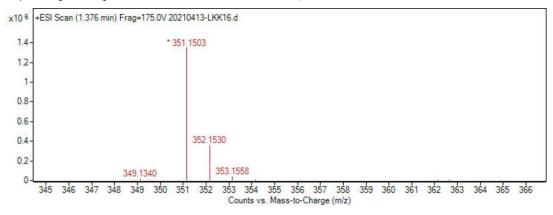

(4-fluorophenyl)(phenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

Colorless liquid, 40.4 mg, 42% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.80 – 7.69 (m, 4H), 7.56 – 7.50 (m, 1H), 7.50 – 7.45 (m, 2H), 7.16 (tdd, J = 8.5, 3.5, 1.9 Hz, 2H), 3.91 – 3.75 (m, 2H), 3.70 (dd, J = 15.0, 7.1 Hz, 1H), 2.61 – 2.43 (m, 1H), 2.32 – 2.21 (m, 1H), 1.97 (dt, J = 12.5, 6.6 Hz, 1H), 1.92 – 1.79 (m, 3H), 1.76 – 1.62 (m, 1H), 1.45 (ddd, J = 15.5, 12.3, 7.6 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 164.90 (d, J = 253.0 Hz), 133.25 (ddd, J = 15.2, 10.6, 8.7 Hz), 132.42 (dd, J = 83.4, 49.3 Hz), 131.83 (d, J = 2.6 Hz), 130.70 (dd, J = 14.9, 9.3 Hz), 128.93 (dd, J = 102.3, 50.1 Hz), 128.72 (dd, J = 11.7, 1.9 Hz), 115.99 (ddd, J = 21.4, 12.7, 2.4 Hz), 79.08 (dd, J = 14.8, 3.0 Hz), 67.72, 31.04 (d, J = 3.9 Hz), 27.31 (dd, J = 3.3, 2.4 Hz), 26.62 (dd, J = 73.4, 3.9 Hz), 25.66. ³¹**P NMR** (202 MHz, CDCl₃) δ 32.30. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -107.08 (d, J = 5.5 Hz). **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₁FO₂P⁺ 319.1258; found 319.1257.

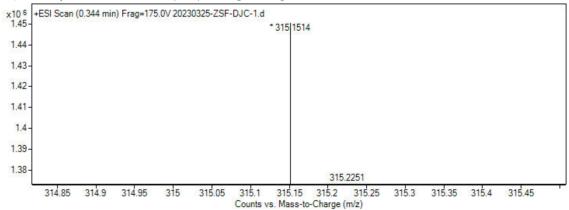
(4-chlorophenyl)(phenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide


Colorless liquid, 49.2 mg, 49% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.79 – 7.62 (m, 4H), 7.57 – 7.41 (m, 5H), 3.92 – 3.75 (m, 2H), 3.74 – 3.66 (m, 1H), 2.58 – 2.44 (m, 1H), 2.26 (dddd, J = 23.0, 15.0, 12.1, 4.4 Hz, 1H), 1.97 (dt, J = 12.3, 6.6 Hz, 1H), 1.91 – 1.79 (m, 3H), 1.76 – 1.63 (m, 1H), 1.45 (ddd, J = 15.5, 12.1, 7.6 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.26 (d, J = 3.3 Hz), 132.97 (d, J = 47.9 Hz), 132.23 (dd, J = 15.3, 10.0 Hz), 131.91 (d, J = 2.7 Hz), 131.22 (d, J = 49.7 Hz), 130.69 (dd, J = 14.6, 9.3 Hz), 128.99 (dd, J = 12.1, 2.4 Hz), 128.76 (dd, J = 11.7, 2.1 Hz), 79.06 (dd, J = 14.8, 4.5 Hz), 67.73, 31.05 (d, J = 4.2 Hz), 27.29 (t, J = 3.8 Hz), 26.47 (dd, J = 73.3, 5.5 Hz), 25.66. ³¹**P NMR** (202 MHz, CDCl₃) δ 32.30. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₁ClO₂P⁺ 335.0962; found 335.0953.

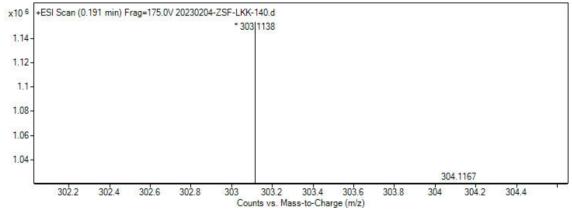
[1,1'-biphenyl]-4-yl(phenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide


White solid, 51.3 mg, 45% yield, m.p. 131-134 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.87 – 7.75 (m, 4H), 7.68 (dd, J = 5.2, 2.9 Hz, 2H), 7.62 – 7.56 (m, 2H), 7.53 – 7.42 (m, 5H), 7.37 (t, J = 7.3 Hz, 1H), 3.84 (ddd, J = 21.7, 10.8, 5.6 Hz, 2H), 3.70 (dd, J = 14.9, 7.3 Hz, 1H), 2.63 – 2.49 (m, 1H), 2.36 – 2.24 (m, 1H), 2.01 – 1.80 (m, 4H), 1.74 (dtd, J = 16.5, 8.2, 4.1 Hz, 1H), 1.47 (ddd, J = 15.4, 12.3, 7.6 Hz, 1H). ¹³C NMR (126 MHz,

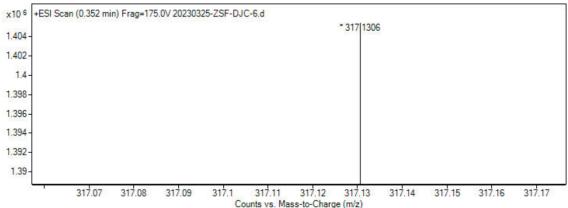
CDCl₃) δ 144.49 (d, J = 2.5 Hz), 139.94, 133.10 (dd, J = 98.6, 47.2 Hz), 131.72 (d, J = 2.6 Hz), 131.58 (dd, J = 99.5, 48.7 Hz), 131.33 (dd, J = 14.6, 9.5 Hz), 130.81 (dd, J = 14.5, 9.3 Hz), 128.94, 128.69 (dd, J = 11.6, 1.7 Hz), 128.11, 127.33 (dd, J = 11.9, 1.8 Hz), 127.25, 79.22 (dd, J = 14.9, 2.5 Hz), 67.74, 31.07 (d, J = 0.9 Hz), 27.41 – 27.37 (m), 26.64 (dd, J = 73.1, 3.5 Hz), 25.69. ³¹P NMR (202 MHz, CDCl₃) δ 32.72. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₆O₂P⁺ 377.1665; found 377.1665.


naphthalen-2-yl(phenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphine oxide

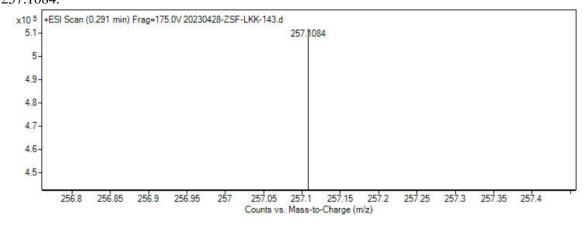
Colorless liquid, 52.1 mg, 50% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 8.41 (dd, J = 13.1, 6.3 Hz, 1H), 7.96 – 7.84 (m, 3H), 7.83 – 7.74 (m, 2H), 7.67 (t, J = 8.9 Hz, 1H), 7.61 – 7.42 (m, 5H), 3.88 (dq, J = 13.8, 6.9 Hz, 1H), 3.84 – 3.76 (m, 1H), 3.70 (dd, J = 14.8, 7.3 Hz, 1H), 2.70 – 2.55 (m, 1H), 2.45 – 2.30 (m, 1H), 2.01 – 1.66 (m, 5H), 1.50 – 1.40 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 134.61 (d, J = 2.2 Hz), 133.03 (dd, J = 98.8, 45.5 Hz), 132.80 (dd, J = 23.6, 8.4 Hz), 132.57 (dd, J = 12.7, 2.6 Hz), 131.77 (d, J = 2.5 Hz), 130.79 (dd, J = 14.1, 9.5 Hz), 129.80 (dd, J = 98.8, 50.0 Hz), 128.87, 128.70 (dd, J = 11.9, 1.4 Hz), 128.53 (dd, J = 11.5, 2.0 Hz), 128.12, 127.81, 126.96, 125.63 (dd, J = 10.3, 9.2 Hz), 79.19 (dd, J = 14.7, 4.5 Hz), 67.72 (d, J = 2.0 Hz), 31.06, 27.37 (t, J = 4.0 Hz), 26.41 (dd, J = 72.9, 4.3 Hz), 25.65. ³¹**P NMR** (202 MHz, CDCl₃) δ 33.29. **HRMS** (ESI) m/z: $[M + H]^+$ calcd for $C_{22}H_{24}O_2P^+$ 351.1508; found 351.1503.


(2-(2-methyltetrahydrofuran-2-yl)ethyl)diphenylphosphine oxide

Colorless liquid, 45.0 mg, 48% yield ($3\mathbf{q}/3\mathbf{q}' = 2.3:1$). ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.67 (m, 4H), 7.56 – 7.42 (m, 6H), 4.01 (dd, J = 12.7, 6.1 Hz, 1H), 3.97 – 3.85 (m, 1H), 3.82 (dd, J = 14.1, 7.5 Hz, 1H), 3.70 (dd, J = 14.7, 7.3 Hz, 1H), 2.46 – 2.22 (m, 2H), 2.00 – 1.58 (m, 6H), 1.19 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 131.89 (d, J = 98.9 Hz), 130.71 (d, J = 2.3 Hz), 129.78 (t, J = 9.5 Hz), 127.65 (dd, J = 11.7, 2.5 Hz), 80.85 (d, J = 14.0 Hz), 66.32, 36.00, 31.77 (d, J = 224.3 Hz), 30.82 (d, J = 3.3 Hz), 24.96, 24.40. ³¹P NMR (202 MHz, CDCl₃) δ 34.12. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₄O₂P⁺ 351.1508; found 315.1514.


(2-(1,3-dioxolan-2-yl)ethyl)diphenylphosphine oxide

Colorless liquid, 30.5 mg ($3\mathbf{r}/3\mathbf{r}' = 5.5:1$), 34% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 11.2, 7.3 Hz, 4H), 7.56 – 7.42 (m, 6H), 4.96 (t, J = 4.1 Hz, 1H), 3.99 – 3.78 (m, 4H), 2.47 – 2.31 (m, 2H), 1.97 (ddd, J = 16.5, 8.1, 4.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 132.62 (d, J = 99.2 Hz), 31.82 (d, J = 2.5 Hz), 130.84 (d, J = 9.3 Hz), 128.71 (d, J = 11.5 Hz), 103.51 (d, J = 16.3 Hz), 65.08, 25.82 (d, J = 2.7 Hz), δ 23.46 (d, J = 73.9 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 32.96. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₂₀O₃P⁺ 303.1145; found 303.1138.

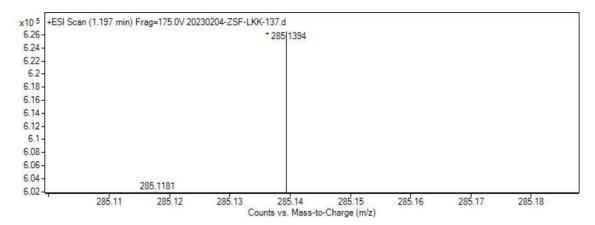

(2-(1,4-dioxan-2-yl)ethyl)diphenylphosphine oxide

Colorless liquid, 36.1 mg, 38% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 – 7.63 (m, 4H), 7.50 (dd, J = 19.8, 6.7 Hz, 6H), 3.76 – 3.49 (m, 6H), 3.22 (t, J = 10.6 Hz, 1H), 2.62 – 2.49 (m, 1H), 2.37 – 2.19 (m, 1H), 1.75 (s, 1H), 1.67 – 1.54 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 132.50 (dd, J = 98.9, 67.5 Hz),131.90 (d, J = 2.4 Hz), 130.77 (dd, J = 15.3, 9.4 Hz), 128.76 (dd, J = 11.8, 5.5 Hz), 75.11 (d, J = 13.5 Hz), 70.87, 66.73, 66.40, 25.28 (d, J = 72.9 Hz), 23.41 (d, J = 3.4 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 35.46. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₂O₃P⁺ 317.1301; found 317.1306.

di-o-tolyl(vinyl)phosphine oxide

Colorless liquid, 15.8 mg, 21% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (dd, J = 13.8, 7.7 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.29 – 7.18 (m, 4H), 6.75 (ddd, J = 24.7, 18.5, 12.6 Hz, 1H), 6.40 – 6.24 (m, 2H), 2.39 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 142.06 (d, J = 8.5 Hz), 134.61, 132.38 (d, J = 11.9 Hz), 131.94 (d, J = 2.2 Hz), 131.76 (d, J = 10.8 Hz), 131.17 (d, J = 97.4 Hz), 130.91 (d, J = 102.5 Hz), 125.70 (d, J = 12.5 Hz), 21.40 (d, J = 4.2 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ 26.52. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₈OP⁺ 257.1090; found 257.1084.

1,2-bis(diphenylphosphanyl)ethane (DPPE)4

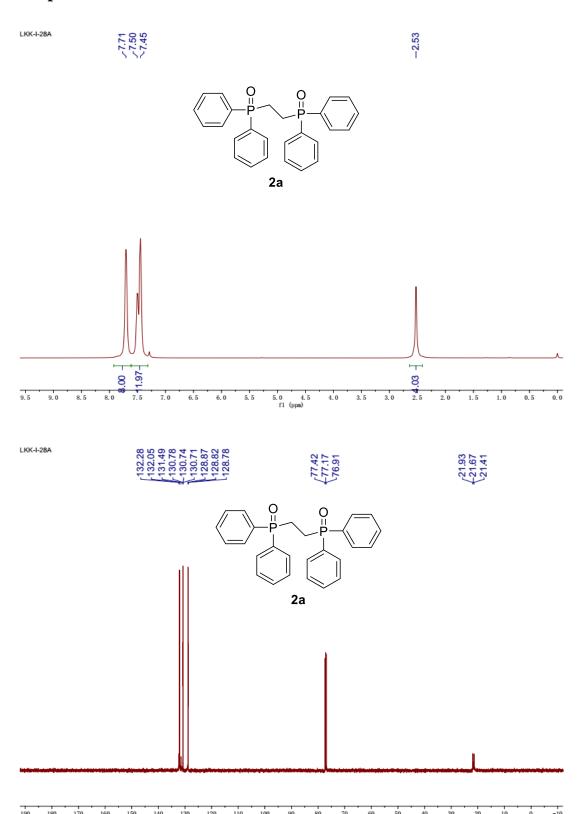

White solid, 101.7 mg, 85% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.18 (m, 20H), 2.15 – 2.03 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.19 (dd, J = 7.4, 5.9 Hz), 132.82 (t, J = 9.4 Hz), 128.75, 128.54 (t, J = 3.1 Hz), 23.95 (d, J = 2.3 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ -12.62.

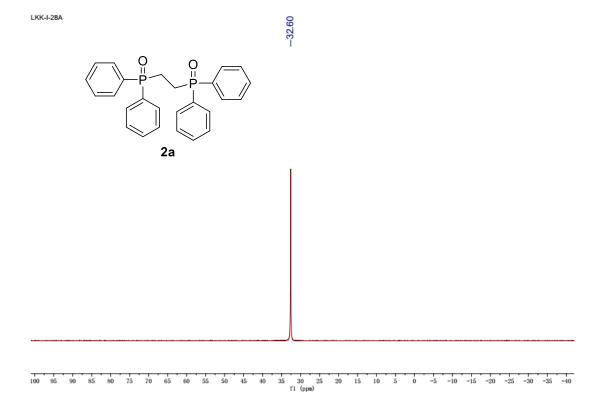
1,2-bis(di-p-tolylphosphanyl)ethane⁵

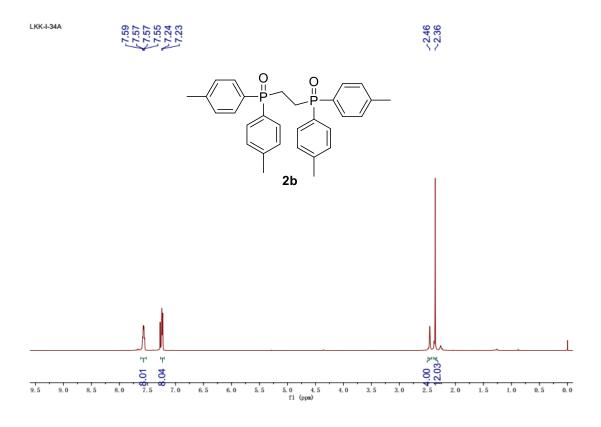
White solid, 25.9 mg, 57% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.21 (d, J = 7.1 Hz, 8H), 7.10 (d, J = 7.7 Hz, 8H), 2.32 (s, 12H), 2.04 (s, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.49, 134.89 (t, J = 6.0 Hz), 132.70 (t, J = 9.6 Hz), 129.21 (t, J = 3.2 Hz), 24.04 (d, J = 2.8 Hz), 21.27. ³¹**P NMR** (202 MHz, CDCl₃) δ -14.32.

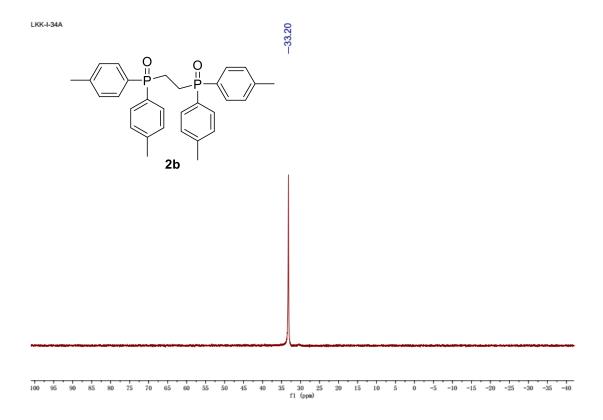
diphenyl(2-(tetrahydrofuran-2-yl)ethyl)phosphane

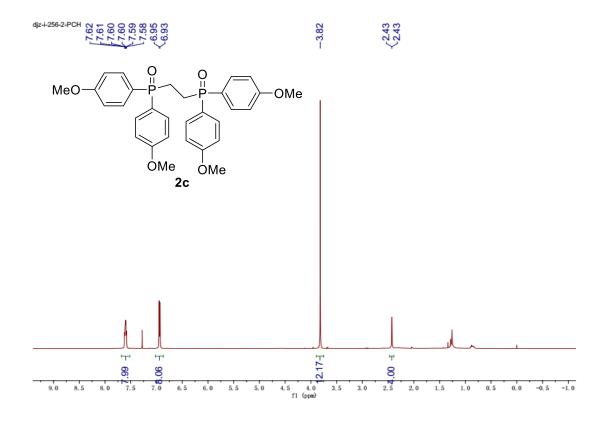
Colorless liquid, 23.5 mg, 83% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (t, J = 6.7 Hz, 4H), 7.30 (t, J = 8.4 Hz, 6H), 3.86 (dq, J = 14.3, 6.8 Hz, 2H), 3.71 (dd, J = 14.7, 7.4 Hz, 1H), 2.20 (td, J = 12.6, 4.8 Hz, 1H), 2.09 – 1.92 (m, 2H), 1.90 – 1.79 (m, 2H), 1.72 – 1.62 (m, 1H), 1.56 (ddd, J = 18.7, 12.9, 5.3 Hz, 1H), 1.47 – 1.38 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.70 (dd, J = 12.8, 6.8 Hz), 132.74 (dd, J = 18.5, 6.1 Hz), 128.52 (d, J = 4.0 Hz), 128.39 (d, J = 6.8 Hz), 79.83 (d, J = 13.9 Hz), 67.69, 31.89 (d, J = 16.1 Hz), 31.15, 25.70, 24.53 (d, J = 11.3 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ -15.54. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₂OP⁺ 285.1403; found 351.1503.

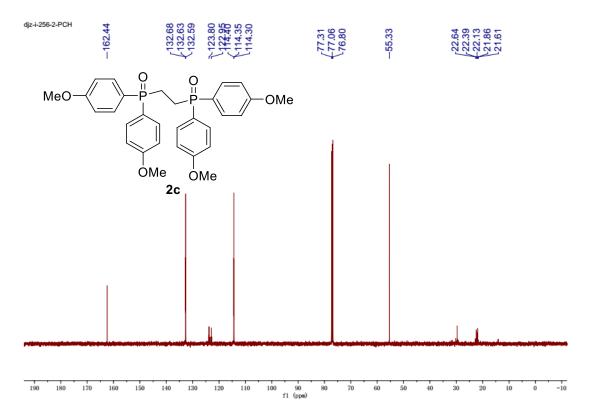


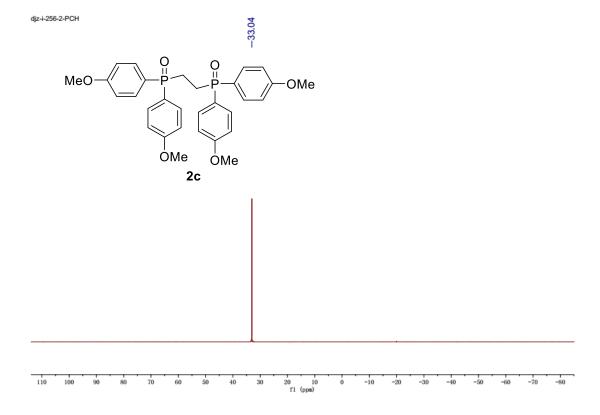

bis(4-chlorophenyl)(2-(tetrahydrofuran-2-yl)ethyl)phosphane

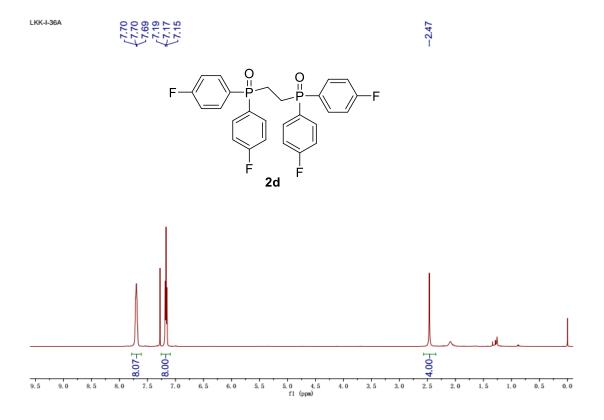

Colorless liquid, 28.7 mg, 81% yield. ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 8H), 3.92 – 3.77 (m, 2H), 3.71 (dd, J = 14.8, 7.4 Hz, 1H), 2.23 – 2.11 (m, 1H), 1.98 (ddd, J = 24.5, 11.6, 5.7 Hz, 2H), 1.90 – 1.81 (m, 2H), 1.65 – 1.60 (m, 1H), 1.57 – 1.48 (m, 1H), 1.45 – 1.39 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.84 (dd, J = 14.2, 12.4 Hz), 135.02 (d, J = 2.2 Hz), 133.96 (dd, J = 19.2, 3.0 Hz), 128.76 (d, J = 6.7 Hz), 79.62 (d, J = 13.9 Hz), 67.73, 31.71 (d, J = 15.7 Hz), 31.19, 25.70, 24.60 (d, J = 11.6 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ -17.20. **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₉C₁₂NaOP⁺ 375.0443; found 375.0436.

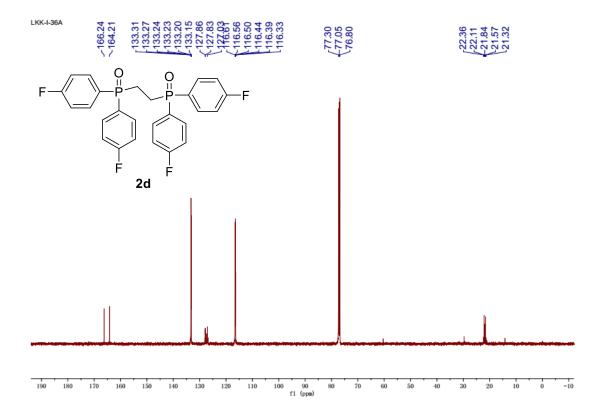

7. NMR spectra

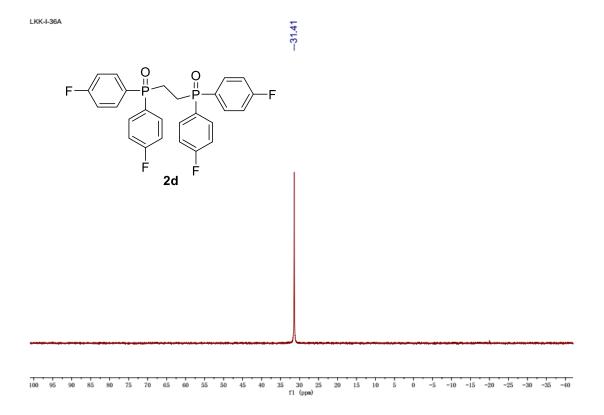


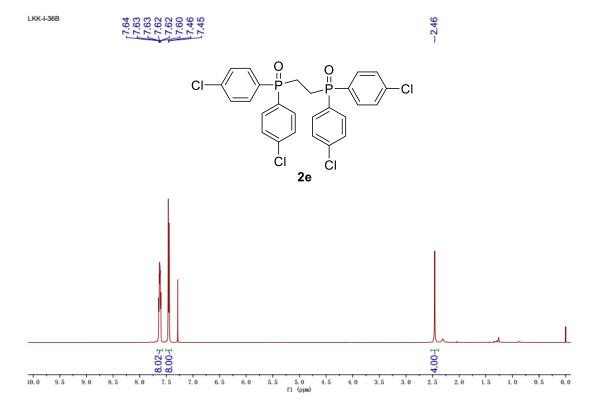


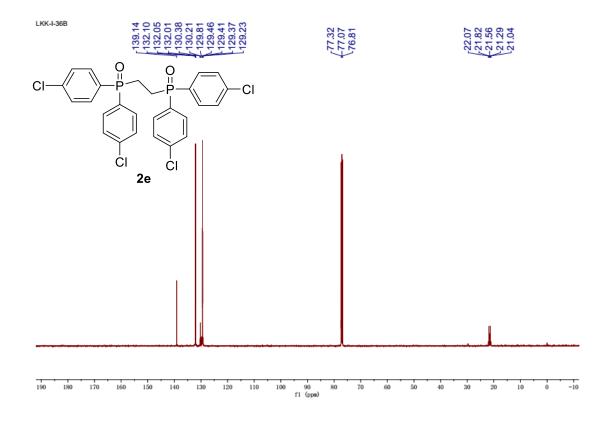




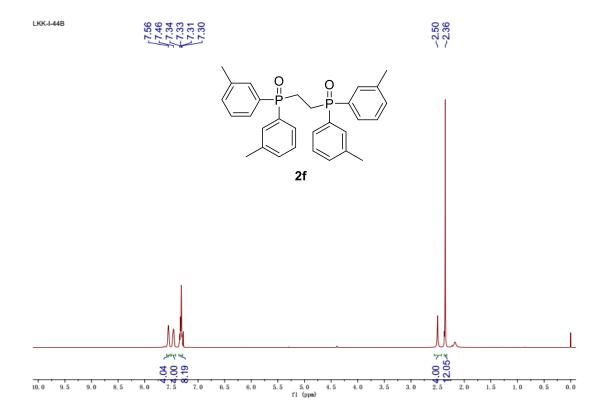


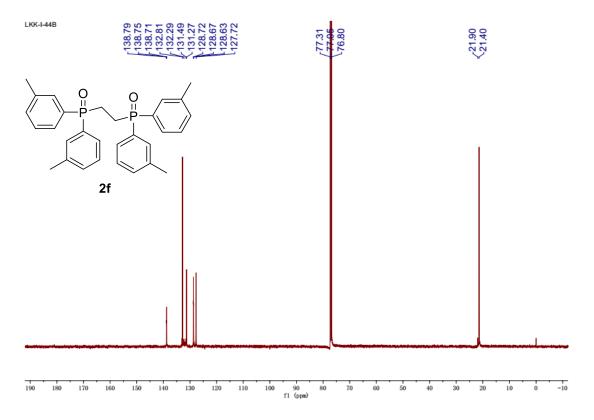


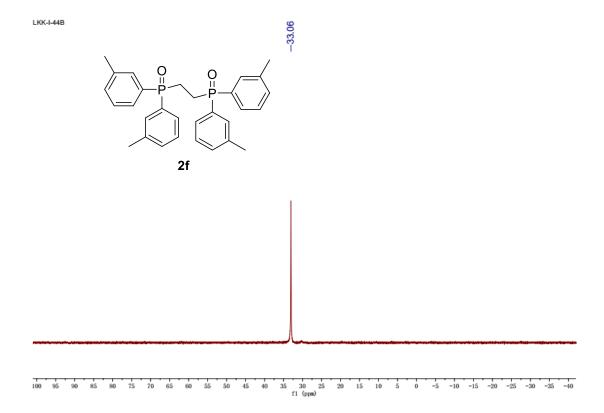


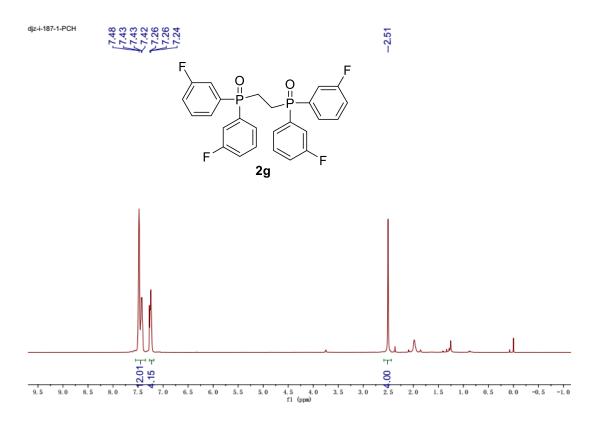


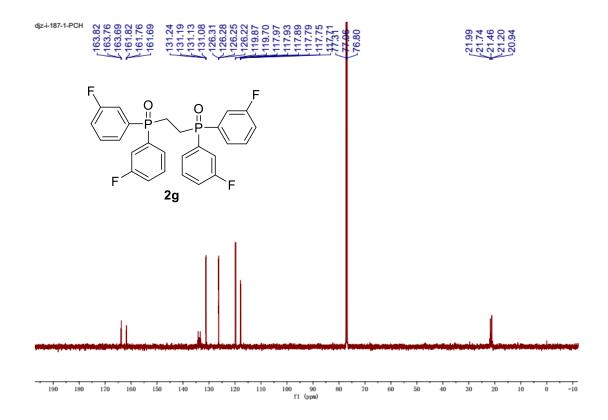
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

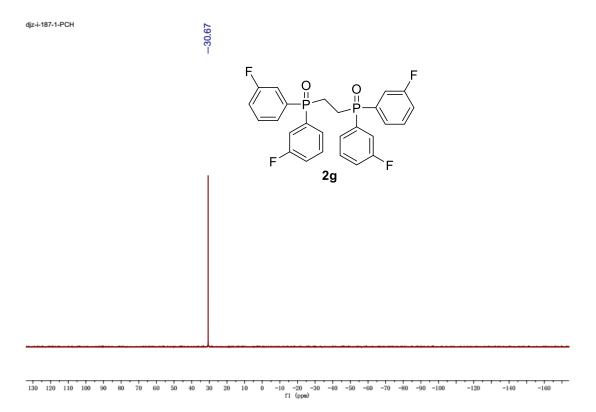


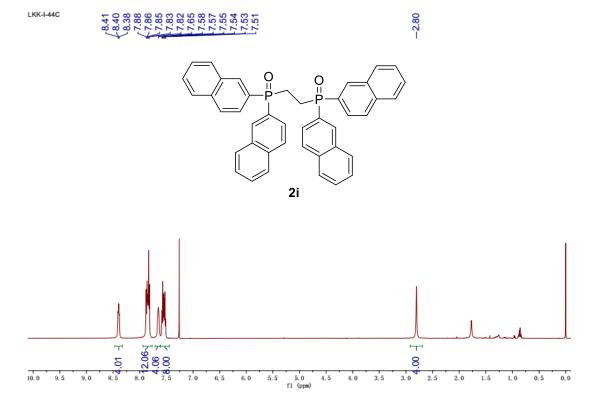


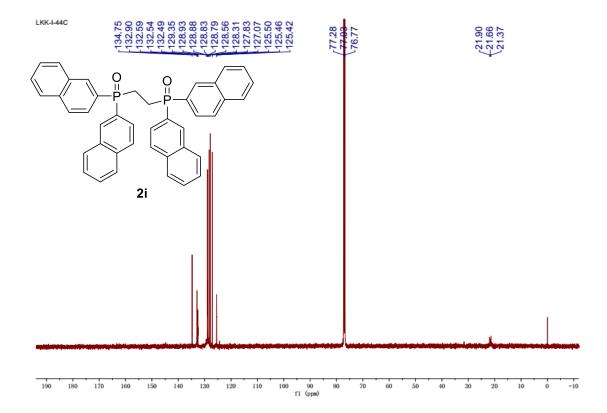

-31.29ĊΙ 2e

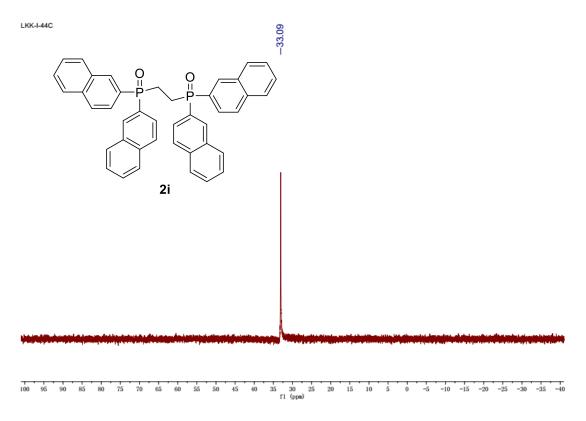

LKK-I-36B

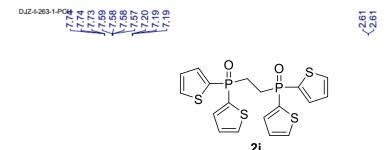

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 f1 (ppm)

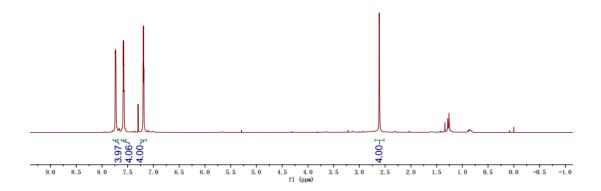


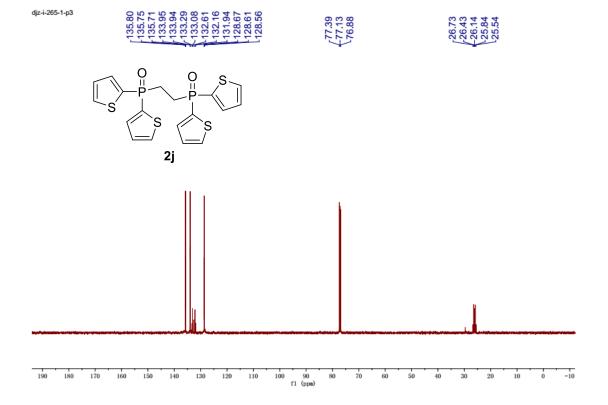


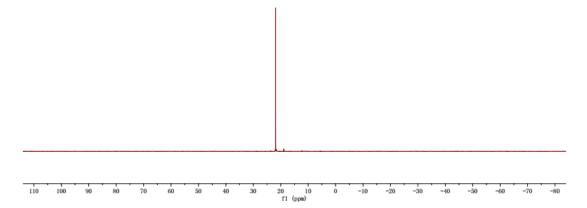


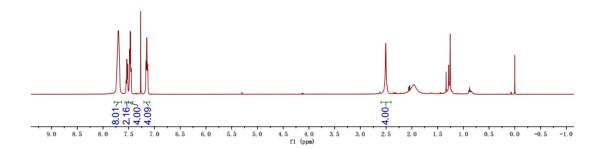


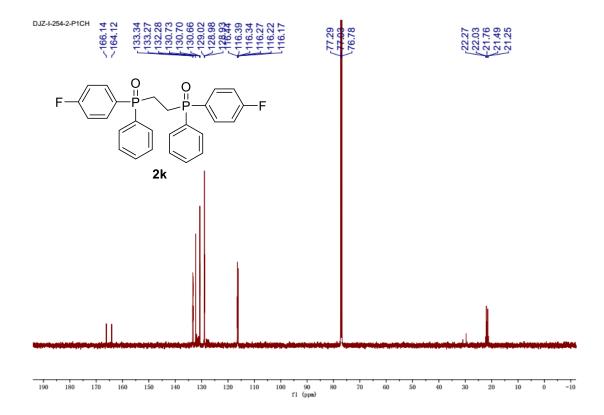


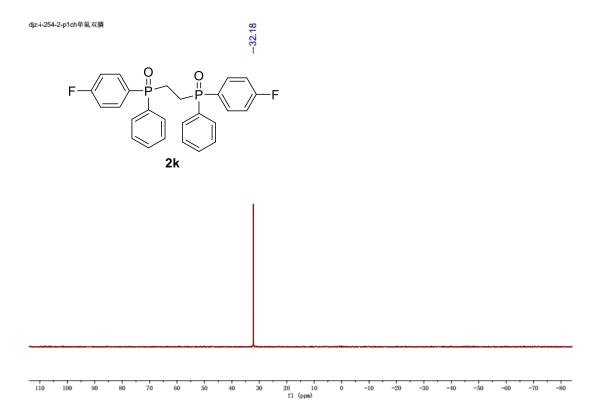


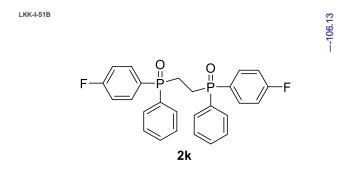


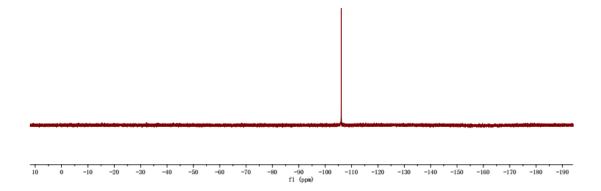


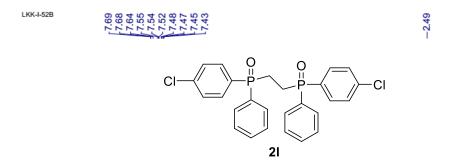


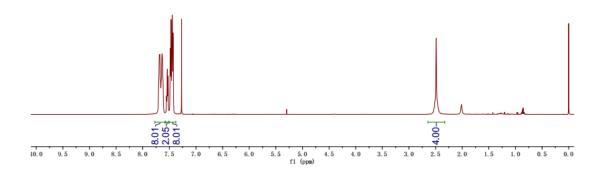


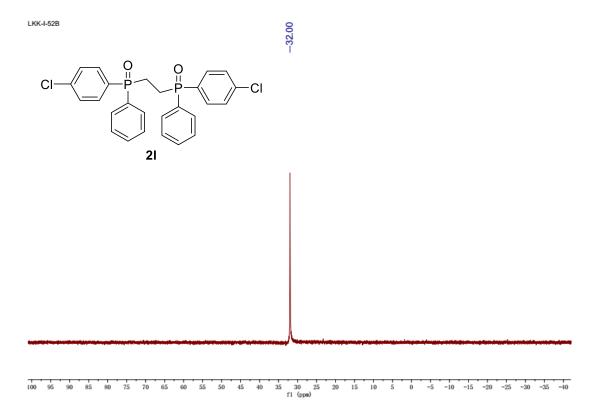


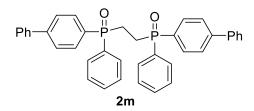

djz-i-265-1-p3

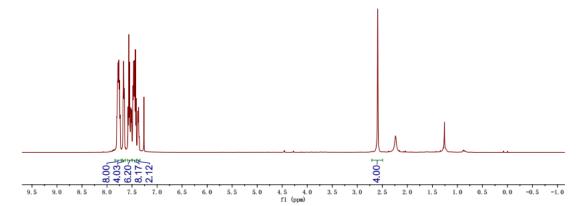


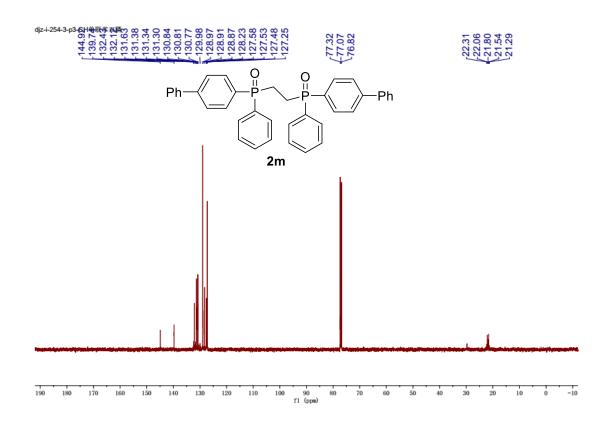


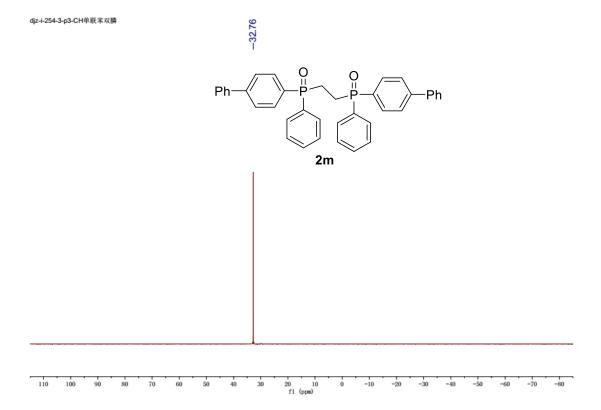


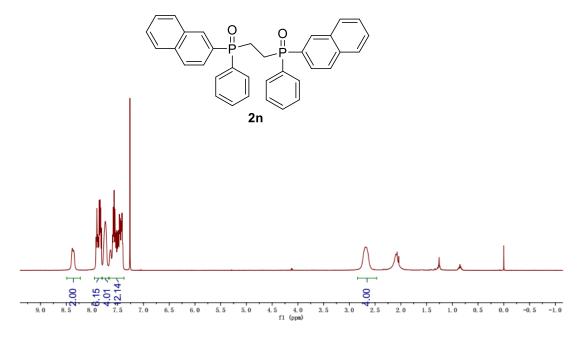


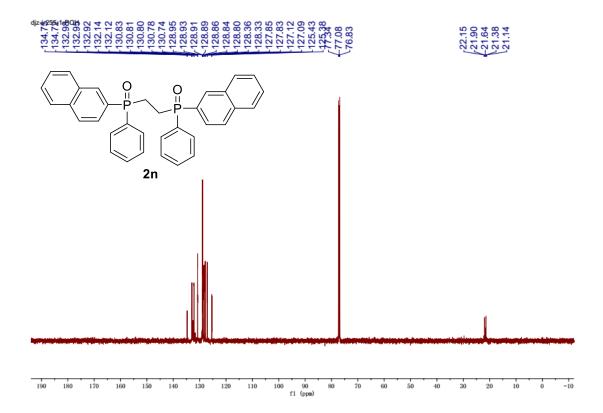


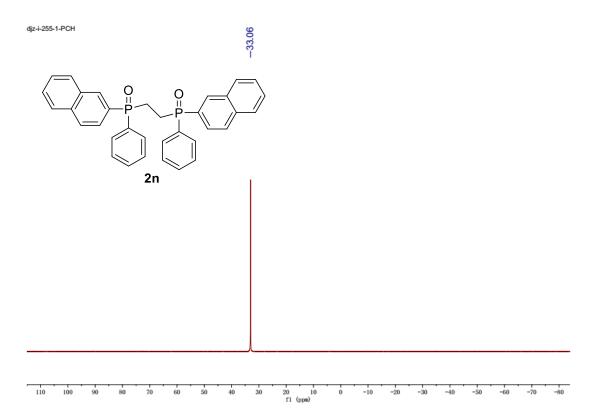


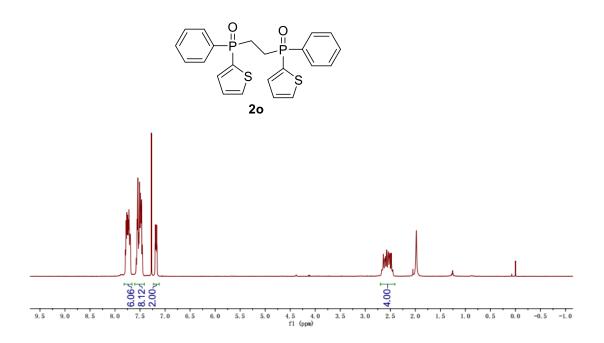


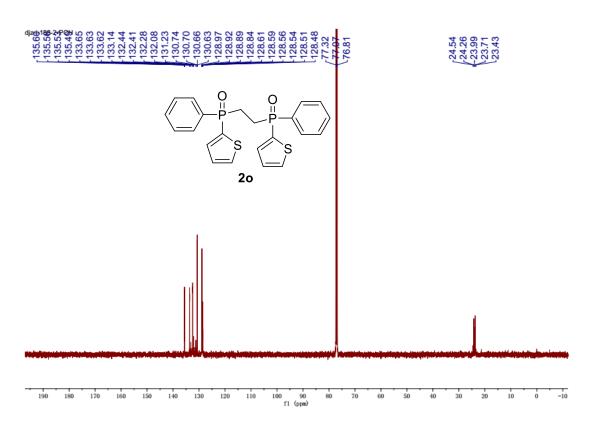


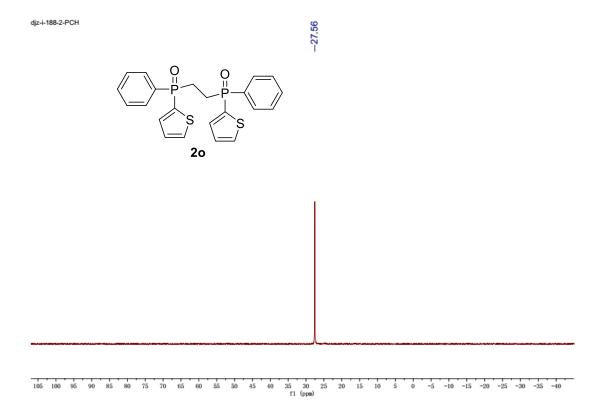


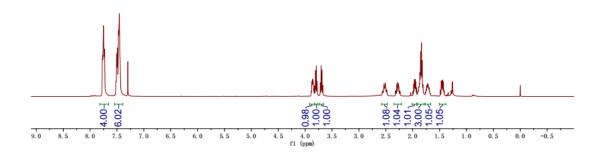


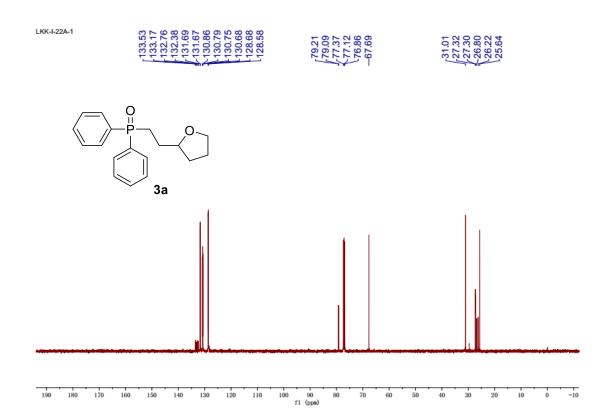


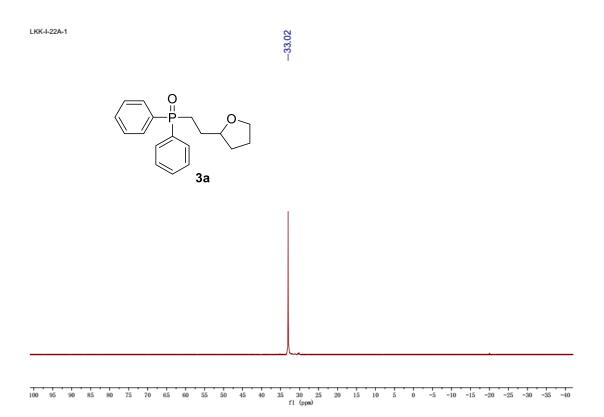


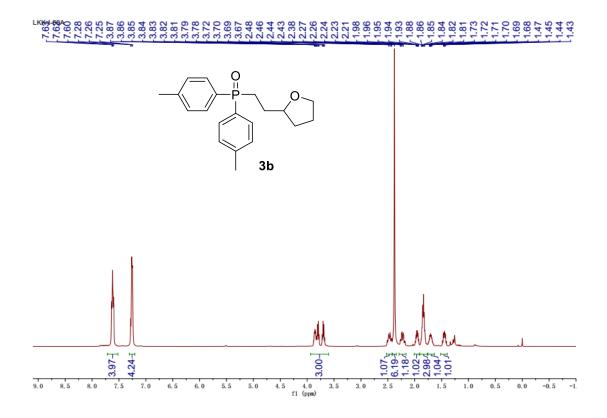


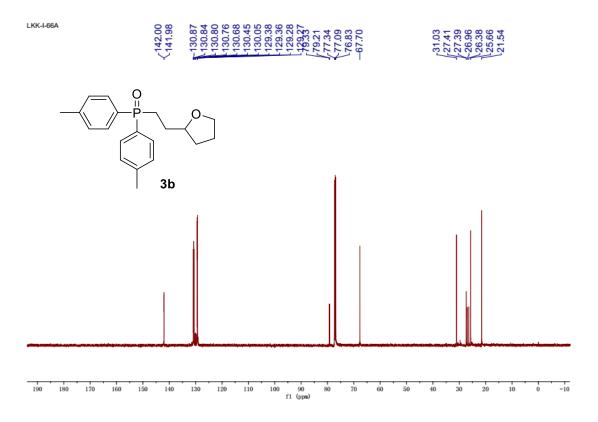


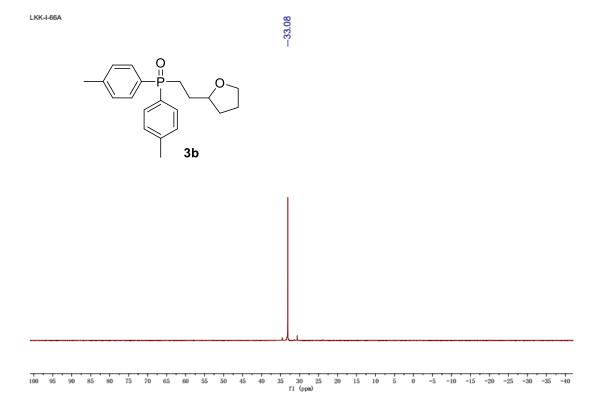


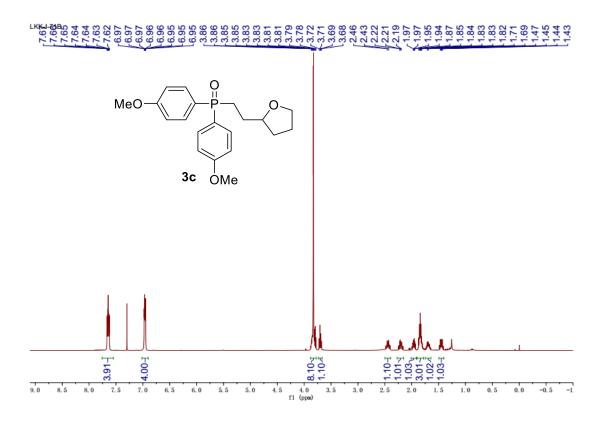


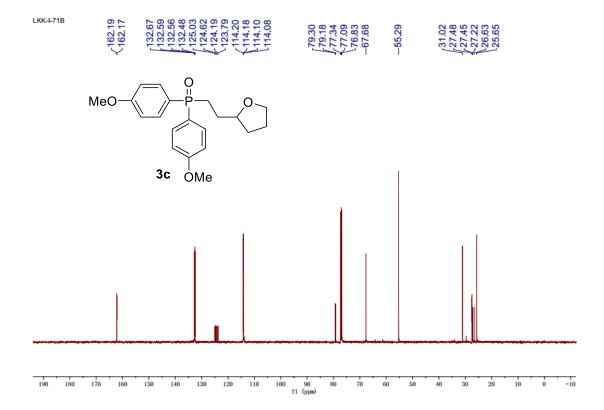


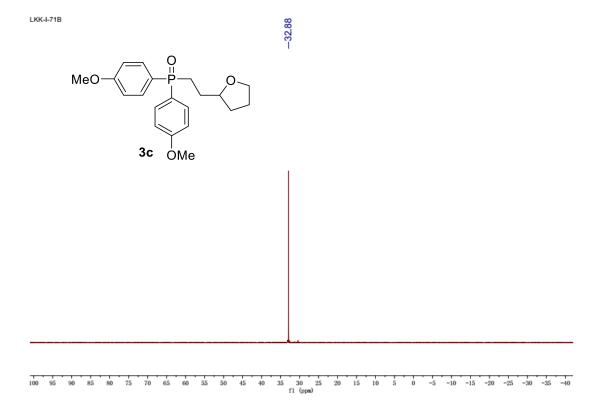


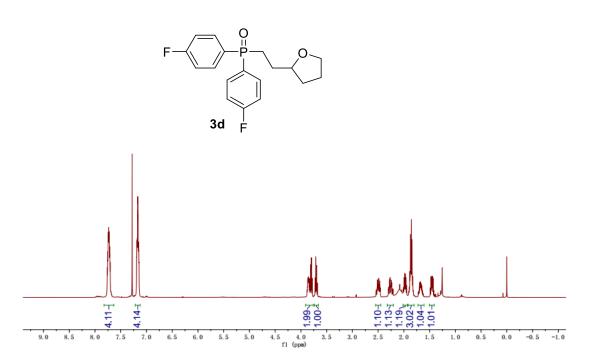


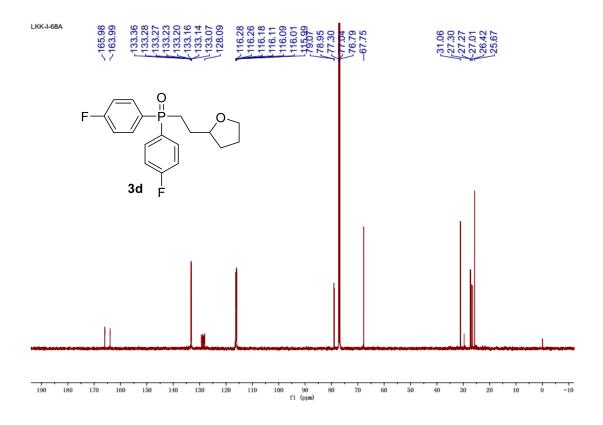


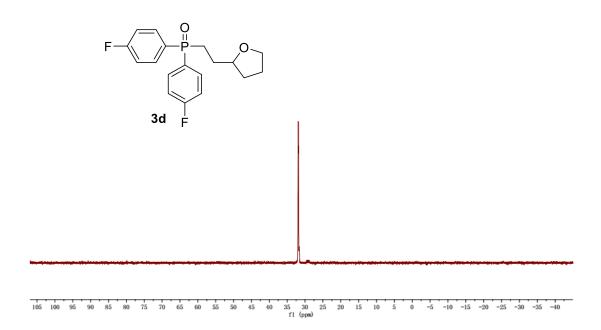


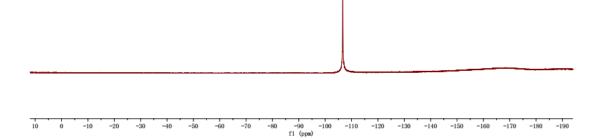


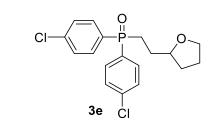


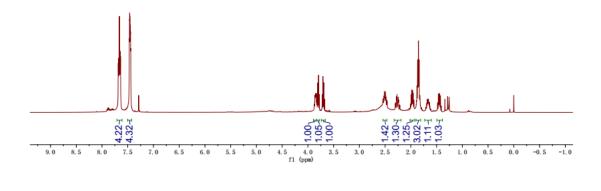


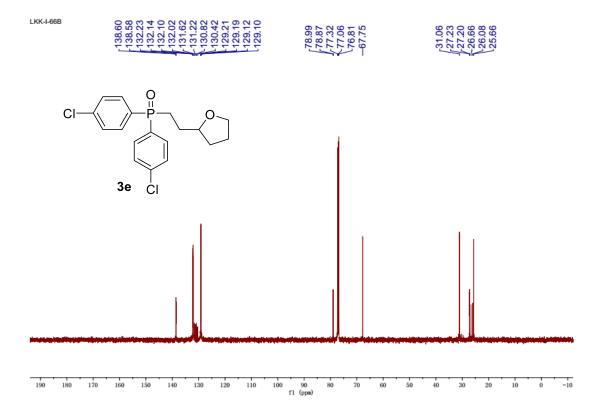


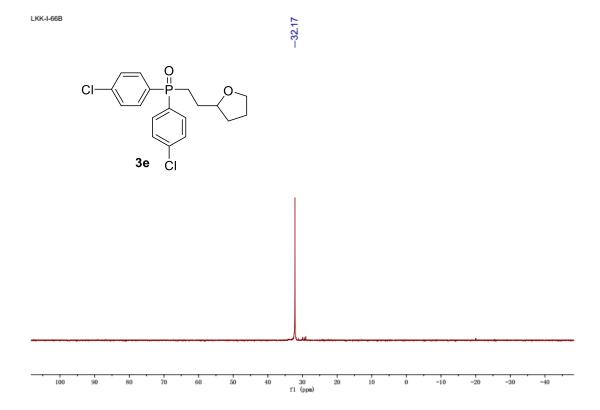


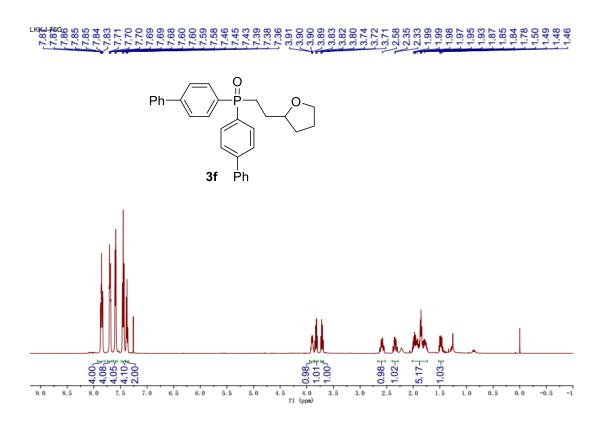

LKK-I-68A

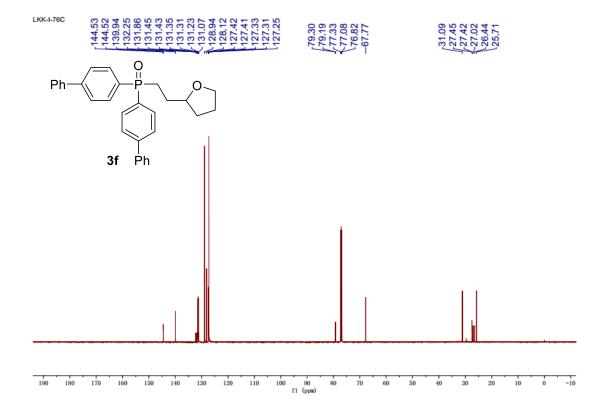

-31.89

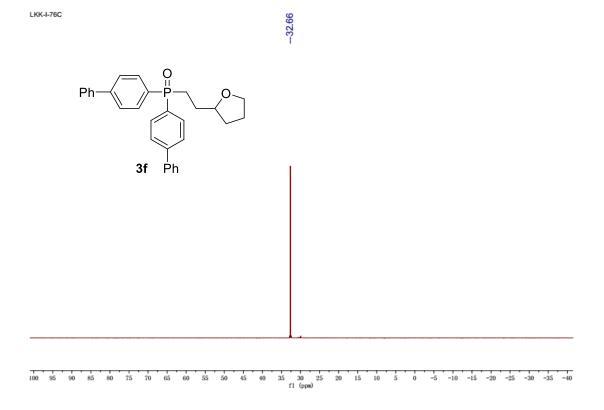


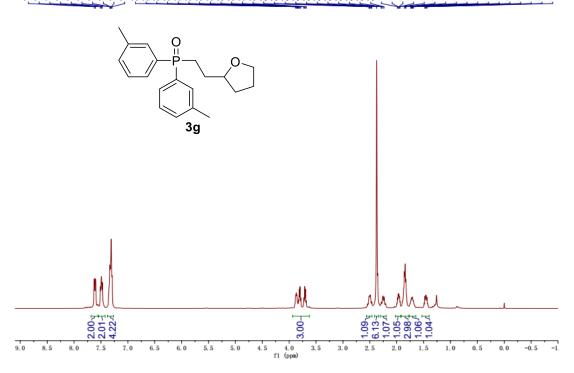

LKK-I-68A

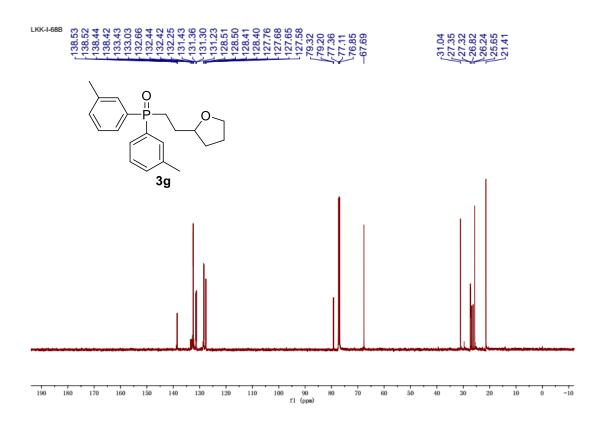

-106.66

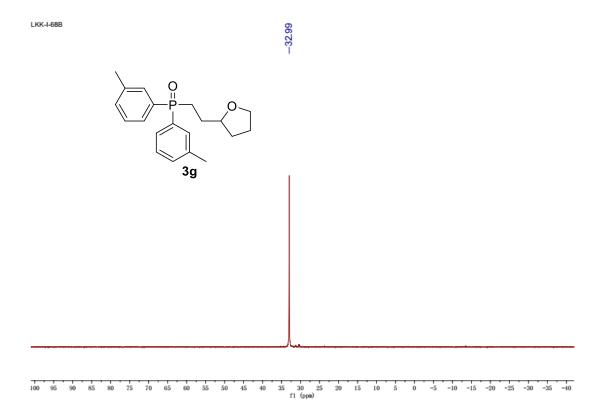




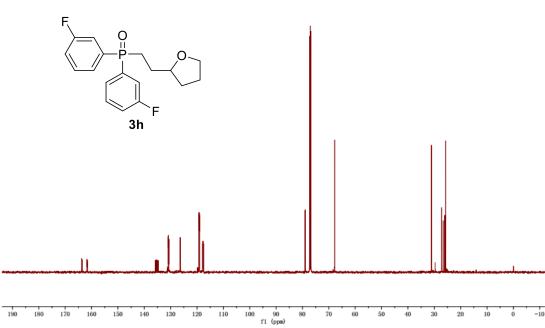


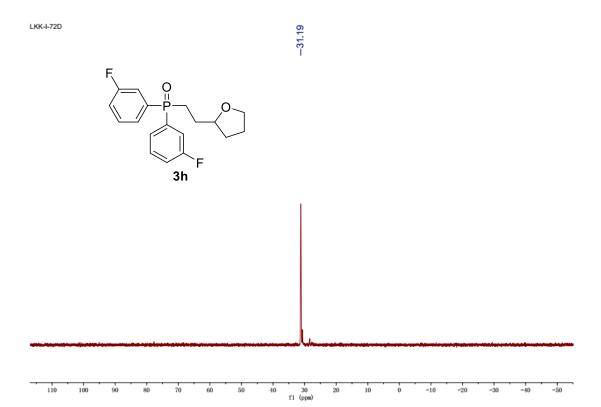




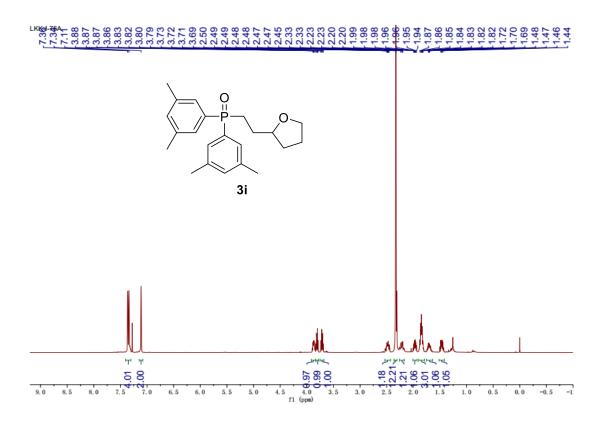


7.669 7.733 7.338

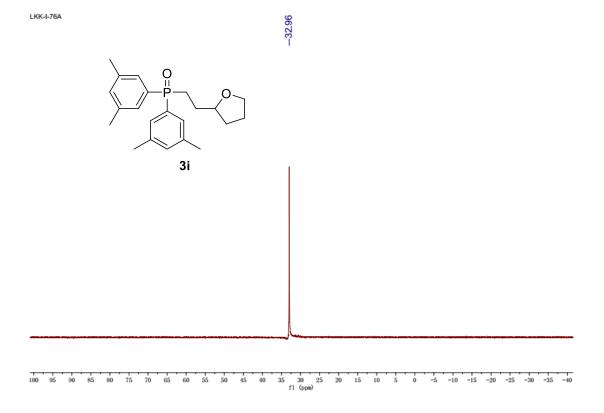


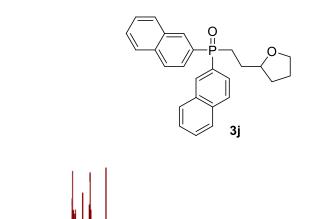


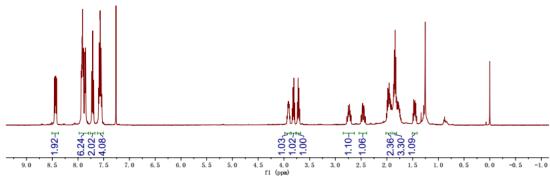


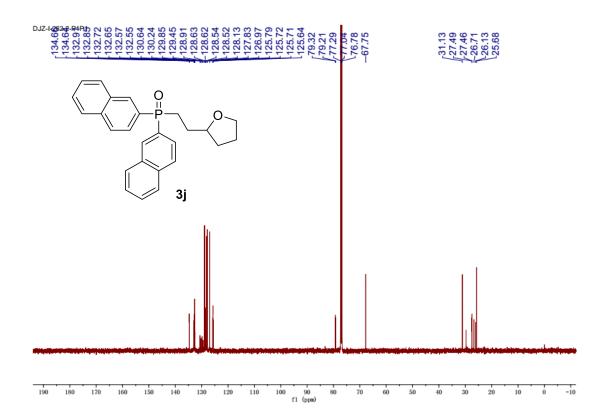


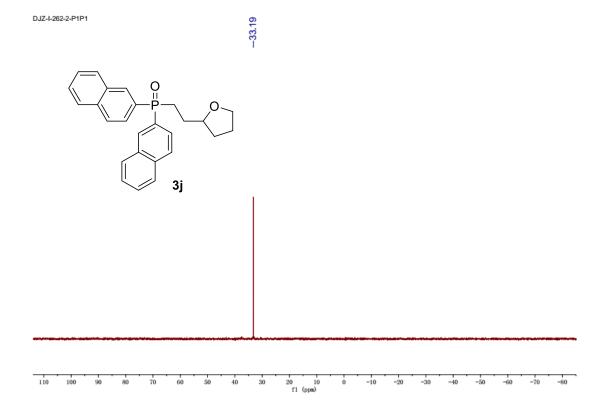


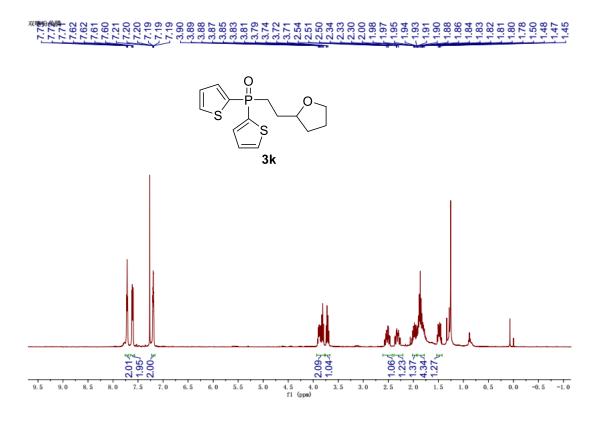


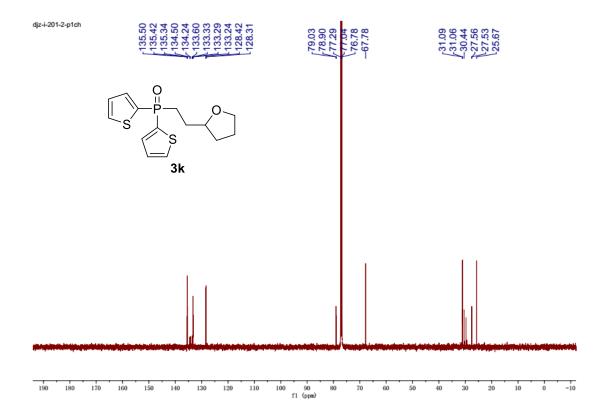


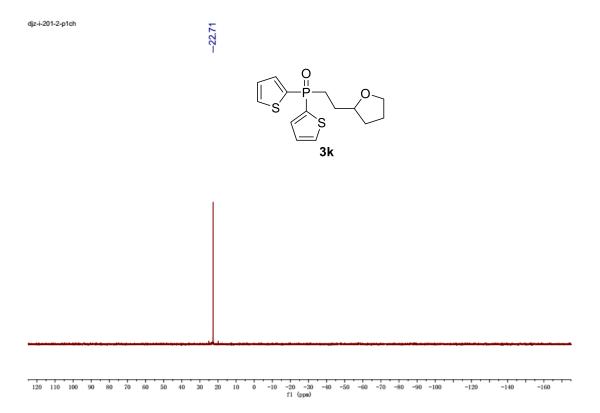


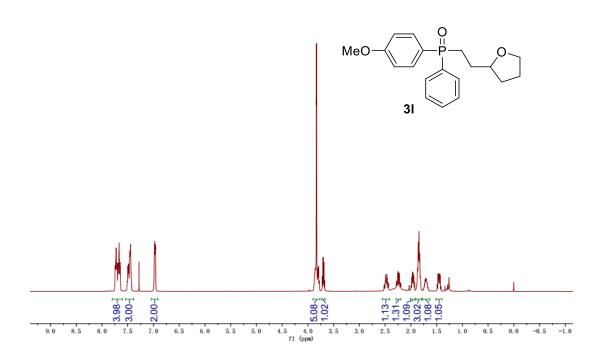


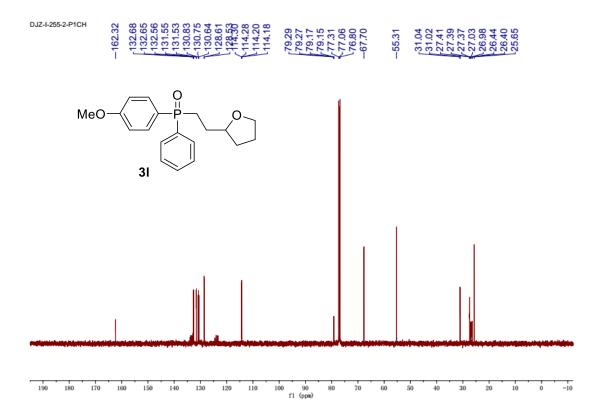


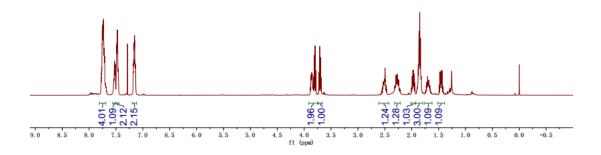


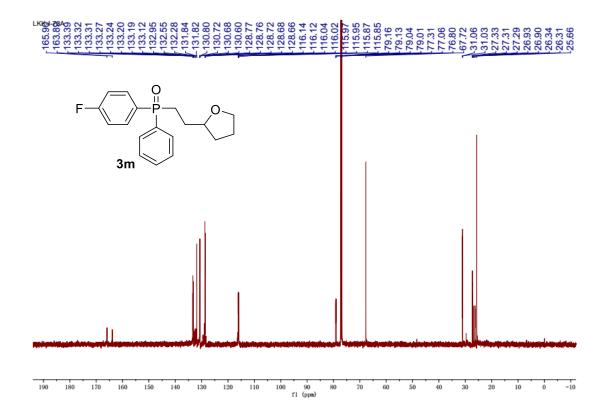






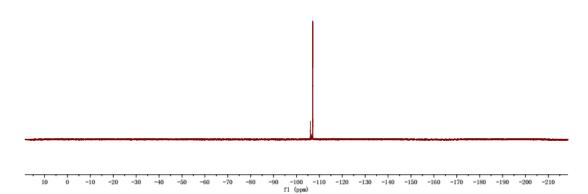


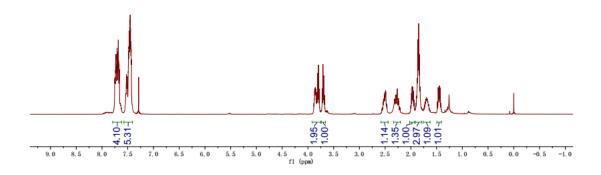


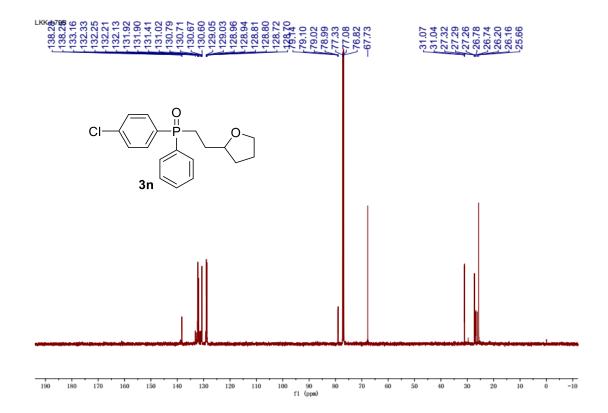




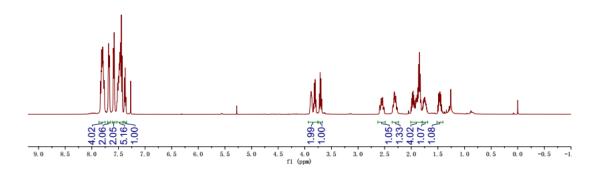
20 10 f1 (ppm) -30 -40

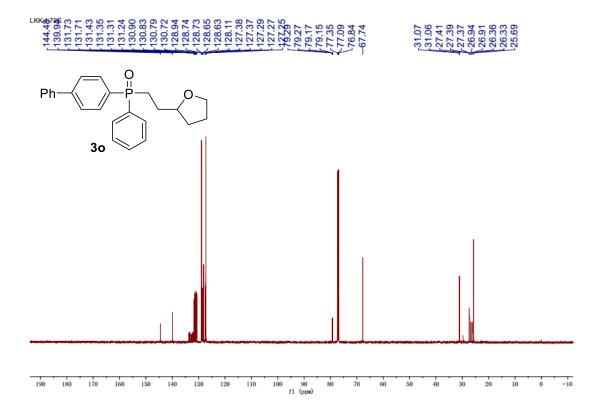


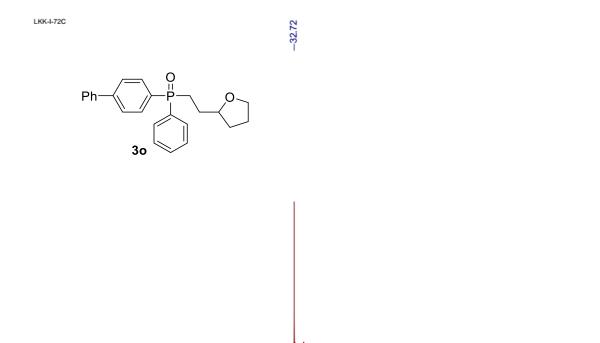


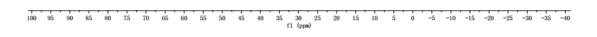

LKK-I-72A

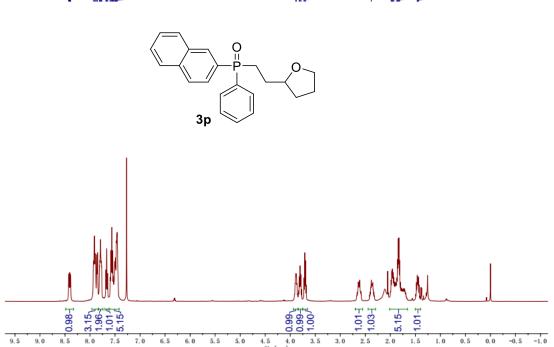

<-107.07 <-107.09

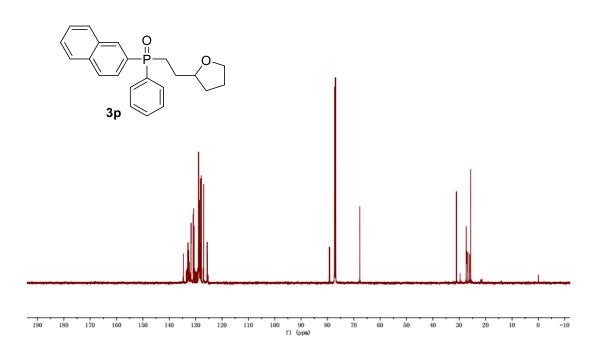


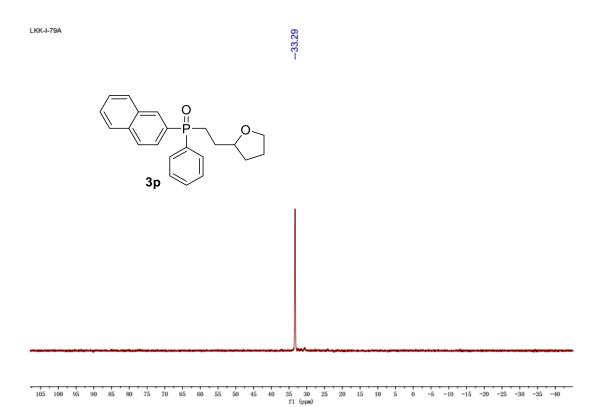


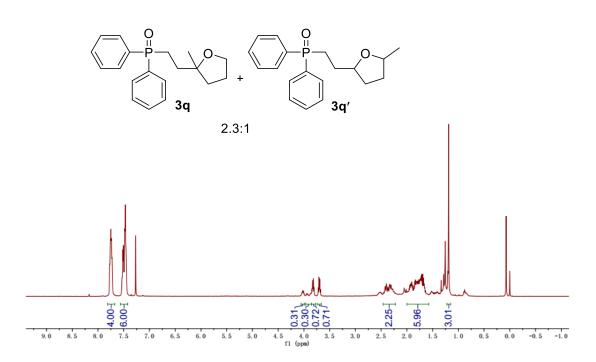


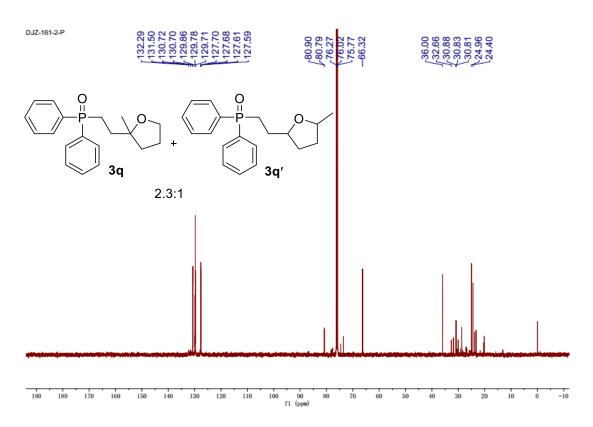


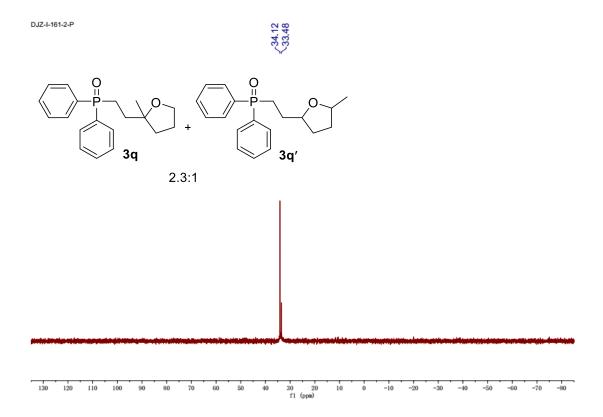


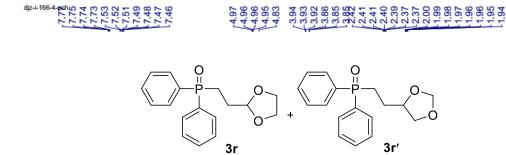


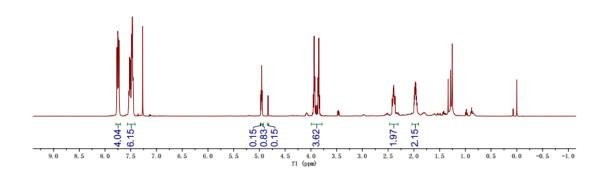


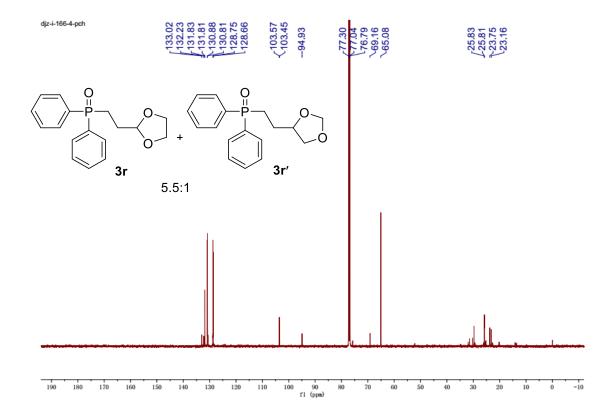


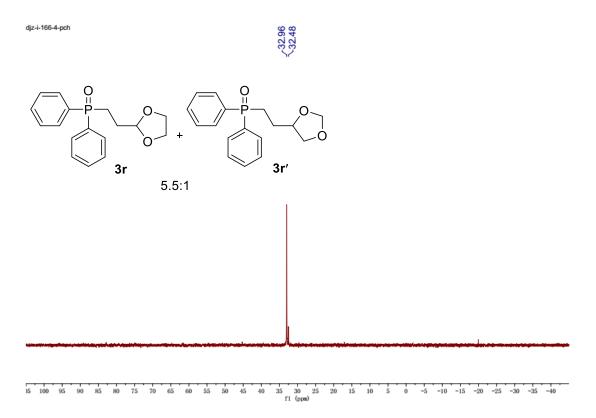


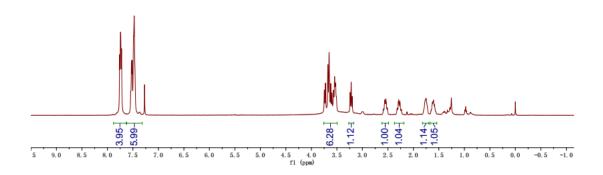


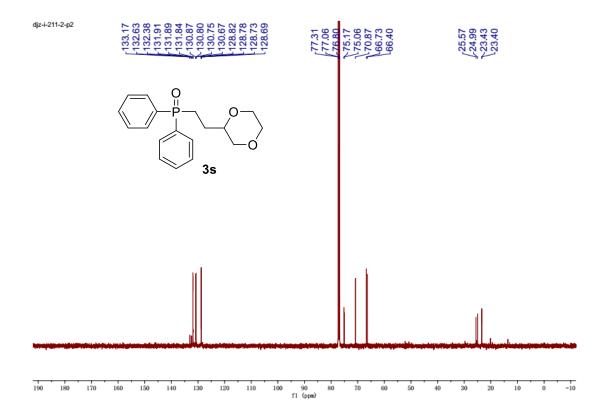




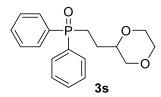


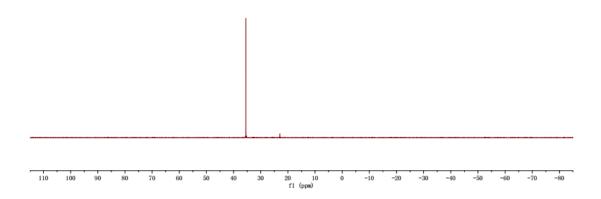


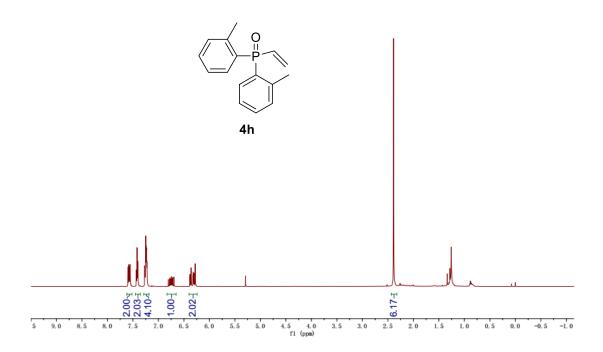


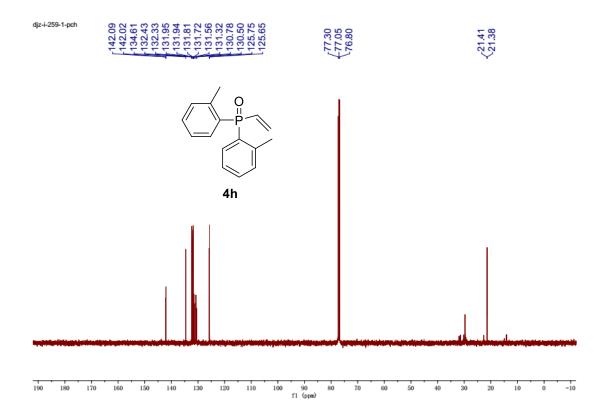


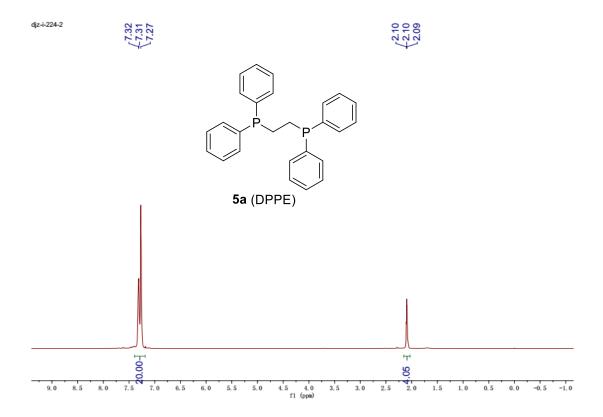
5.5:1

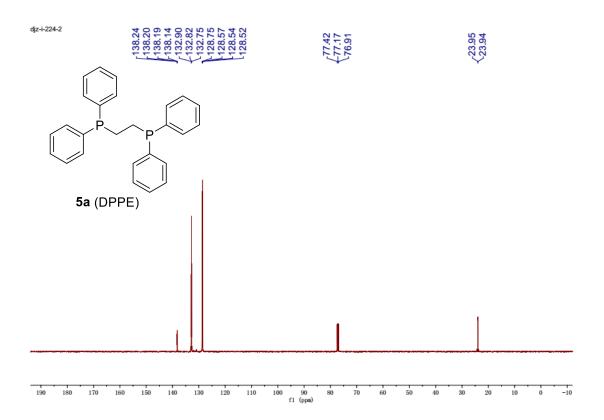


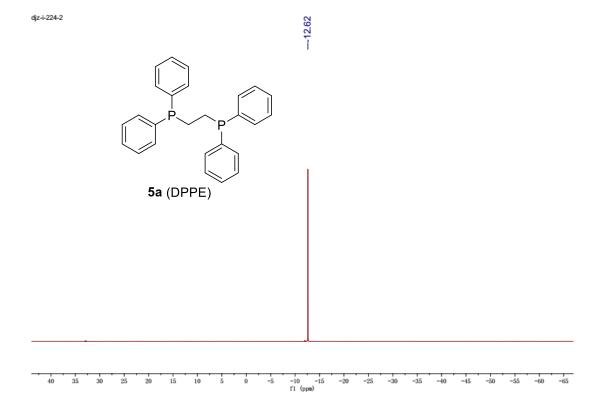


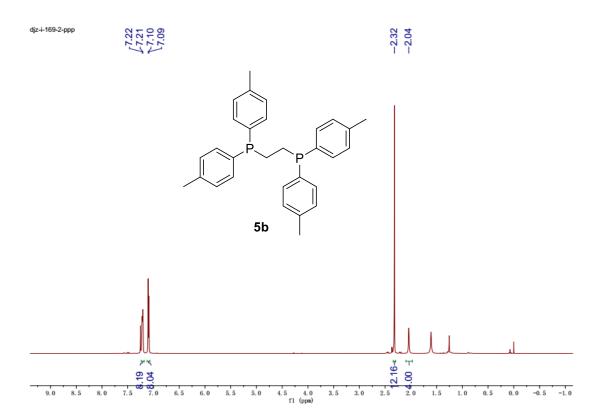


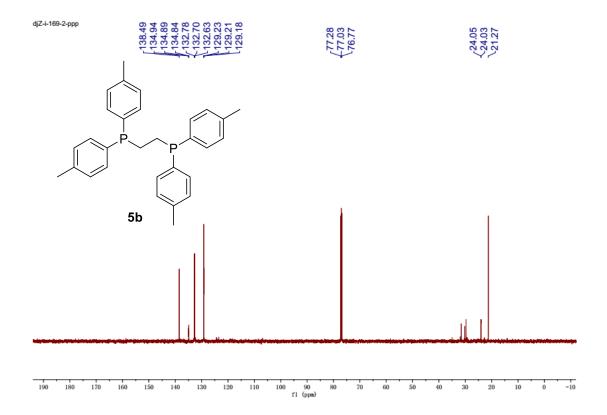


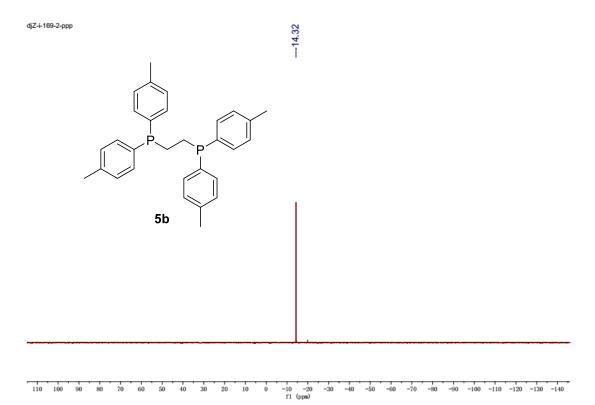


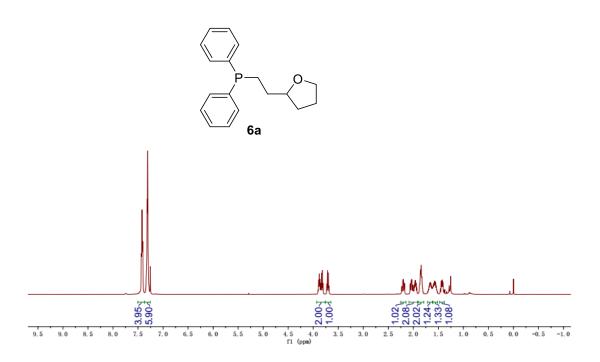


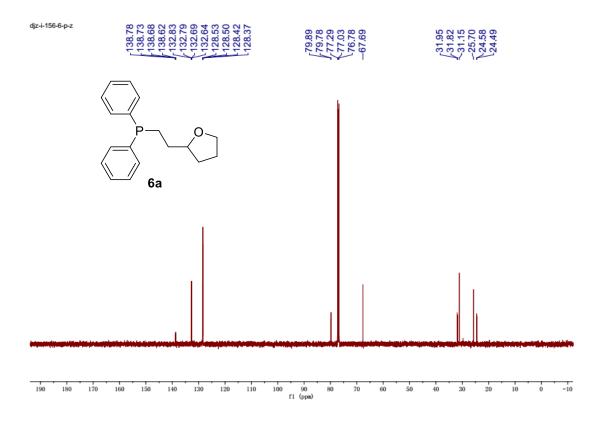


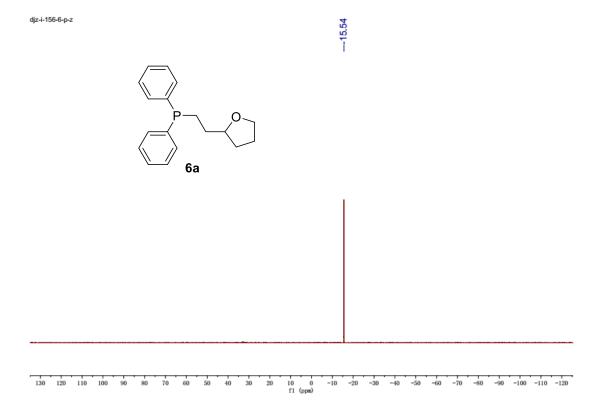


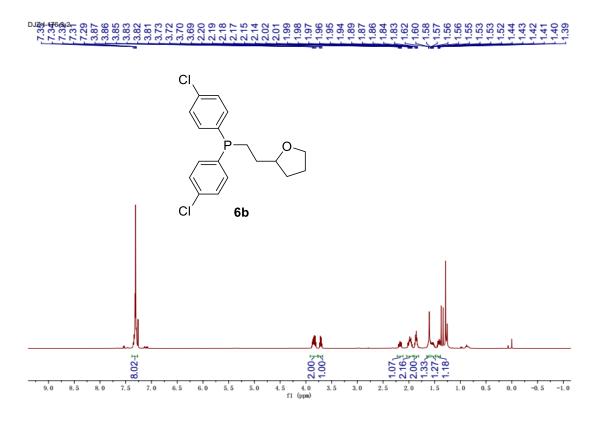


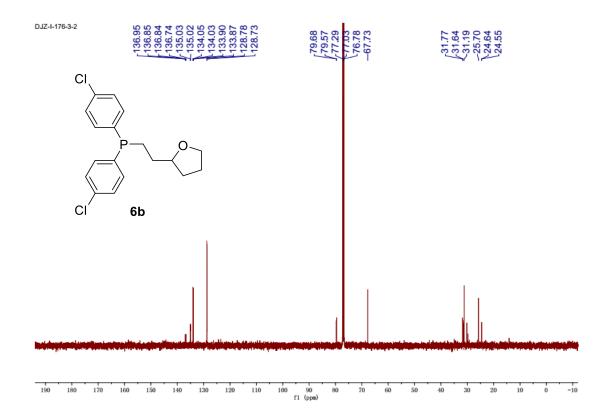


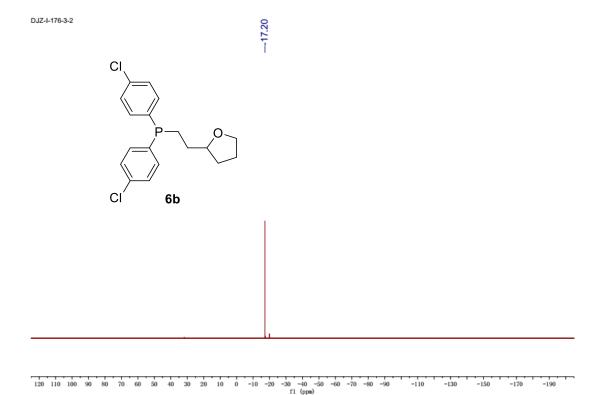












8. References

- 1. X. Zhang, J. Wang and S.-D. Yang, ACS Catal., 2021, 11, 14008-14015.
- 2. Y. Okugawa, Y. Hayashi, S. Kawauchi, K. Hirano and M. Miura, *Org. Lett.*, 2018, **20**, 3670-3673.
- 3. A. Yoshimura, Y. Saga, Y. Sato, A. Ogawa, T. Chen and L.-B. Han, *Tetrahedron Lett.*, 2016, **57**, 3382-3384.
- 4. C. Laye, J. Lusseau, F. Robert and Y. Landais, *Adv. Synth. Catal.*, 2021, **363**, 3035-3043.
- 5. K. Kim, A. M. P. Moeljadi, H. Hirao and S. H. Hong, *Adv. Synth. Catal.*, 2017, **359**, 3292-3298.