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Visible Light-Induced Cyclization Reactions for the Synthesis of 

1,2,4-Triazolines and 1,2,4-Triazoles 

Hongyu Wang,
†
 
 
Yanfei Ren,

†
 Kaiye Wang, Yunquan Man, Yanan Xiang, Na Li* and Bo Tang* 

A novel method for concisely synthesizing 1,2,4-triazolines via 

[3+2] cyclization under visible light is reported. These compounds 

can be easily converted into 1,2,4-triazoles under basic or 

photoredox conditions. The application of the 1,2,4-triazoles was 

also investigated via mild operations. 

Nitrogen-containing moieties are vital parts of a large number of 

medicinal compounds and naturally biological products.
1 

Thus, the 

development of novel strategies for the efficient synthesis of these 

heterocyclic compounds is highly important in the field of synthetic 

chemistry. Notably, 1,2,4-triazolines and 1,2,4-triazoles represent 

important structural units that exhibit anticancer and 

anticonvulsant properties and which exist in numerous biologically 

active compounds (Figure 1).
2 

Due to the significance of these 

molecules, some strategies for their efficient synthesis have been 

developed based on the metal-catalysis and organocatalysis.
3
 In 

addition, due to being readily available, azodicarboxylates have 

been employed as important reagents for the synthesis of these 

compounds. For example, Tepe and co-workers reported the 

efficient synthesis of 1,2,4-triazoles utilizing oxazolones and 

azodicarboxylate (Scheme 1A) via two steps.
4
 Heinrich’s group 

realized the [3+2] cyclization between azomethines ylides and 

phenylazocarboxylates yielding the 1,2,4-triazoles via three steps 

(Scheme 1B).
5
 To the best of our knowledge, although large number 

of methods for preparing these products has been reported in the 

past decades, mild operating conditions with metal-free, room 

temperature, and fewer experimental steps are still challenging 

projects for chemists. 

Recently, photoredox catalysis has emerged as a powerful 

approach in organic synthesis, and various novel reactions have 

begun to be fully realized under visible light.
6 

Therefore, cyclization 

reactions induced by visible light for the synthesis of 1,2,4-triazoles 

would be an interesting and significant method. 2H-azirines, as 

highly important valuable intermediates for preparing various 

functional compounds, could be catalyzed by transition metal 

catalysts or induced by UV light irradiation.
7
 Recently, Xiao and co-

workers found that 2H- azirines could be excited by a 

photosensitizer under visible light, in order to synthesize oxazoles 

and pyrroles.
8
 Inspired by the works, we speculated that 1,2,4-

triazoles might be synthesized by photoredox catalysis using 2H-

azirines and azodicarboxylates. Herein, we report the efficient 

synthesis of 1,2,4-triazolines and 1,2,4-triazoles under visible light 

via one step. 

Initially, we examined the reaction of 2H-azirine 1a with 

azodicarboxylate 2a in the presence of I (9-mesityl-10-methyl- 

acridinium perchlorate). DCE was used as the solvent under blue 

LED illumination. To our delight, the reaction was completed in 10  
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Scheme 1. The synthesis of 1,2,4-triazoles. 
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min to give 3a in 91% yield (Table 1, entry 1). However, when the 

reaction was catalyzed by Ru(bpy)3Cl2
.
6H2O, Ir(ppy)2(dtbbpy)PF6 and 

EY, no products could be obtained (Table 1, entries 4-6). After 

screening the solvents, no better results were obtained, and DCE 

was determined to be the superior choice (Table 1, entries 7-9). 

Control experiments were also performed, and no reaction 

occurred in the absence of the photosensitizer or visible light (Table 

1, entry 2,3). Taken together, these results indicated that the [3+2] 

cyclization was induced by photoredox catalysis. 

Table 1. Screening the reaction conditions.a 

 

a
Unless otherwise noted, in all reactions, 1a (0.05 mmol) and 2a (0.075 mmol) 

were catalyzed by I ( 5 mol%) in DCE (1 mL) under blue LED at 25 
o
C. DCE: 

ClCH2CH2Cl. 

Table 2. The scope of the [3+2] reactions.a 

R

N

R' N
NR''O2C
CO2R''

+
N N

NR

R'

R''O2C
CO2R''

I (5 mol%)

10 W Blue LED,

DCE, 25 oC

N N

N

EtO2C
CO2Et

N N

N

iPrO2C
CO2iPr

N N

N

BnO2C
CO2Bn

N N

N

EtO2C
CO2Et

F

N N

N

EtO2C
CO2Et

Cl

N N

N

EtO2C
CO2Et

Br

N N

N

EtO2C
CO2Et

F

N N

N

EtO2C
CO2Et

N N

N

EtO2C
CO2Et

3a, 81% yield, 1 h

(78% yield, 2 h)b
3b, 62% yield, 1 h 3c, 60% yield, 1 h

3g, 75% yield, 15 h 3h, 87% yield, 0.5 h

3i, 71% yield, 0.5 h 3k, 60% yield, 1 h

3d, 47% yield, 41 h

3q, 75% yield, 1 h

N N

N

EtO2C
CO2Et

N N

N

EtO2C
CO2Et

Me

Cl

3e, 58% yield, 1 h

3l, 65% yield, 1.5 h

1 2 3

N N

N

EtO2C
CO2Et

MeO

3j, 36% yield, 0.5 h

N N

N

EtO2C
CO2Et

Me

3m, 45% yield, 1 h

N N

N

EtO2C
CO2Et

OMe

3n, 37% yield, 0.5 h

N N

N

EtO2C
CO2Et

Et

3f, 92% yield, 1 h

N N

N

EtO2C
CO2Et

F

N N

N

EtO2C
CO2Et

Br

N N

N

EtO2C
CO2Et

Me

N N

N

EtO2C
CO2Et

3r, 62% yield, 1 h

N N

N

EtO2C
CO2Et

Me

Me

Me

3o, 92% yield, 1 h 3p, 56% yield, 1 h

3s, 65% yield, 1 h 3t, 78% yield, 1 h  

a
Unless otherwise noted, in all reactions, 1 (0.5 mmol) and 2 (0.75 mmol) were 

catalyzed by I (5 mol%) in DCE under blue LED at 25 
o
C. 

b
1a (5 mmol) and 2a (7.5 

mmol) were catalyzed by I (5 mol%) in DCE under blue LED at 25 
o
C. 

Under the optimized conditions, we next investigated the scope 

of the [3+2] cyclization reactions with various azodicarboxylate and 

2H-azirines. In general, all of the reactions proceeded smoothly to 

afford the desired products in good and excellent yields. Different 

protecting groups of the azodicarboxylate, including ethyl, isopropyl, 

and benzyl groups, were all tolerated in the reactions. The electron-

withdrawing groups and electron-donating groups on the benzene 

ring of the 2H-azirines all furnished the corresponding products 

with good to excellent yields within the desired time period. The 

naphthyl moiety of the 2H-azirines was also tolerated, with 62% 

yield and 65% yield in 1h (Table 2). In particular, 3a can be scaled up 

to gram-level affording 1.4g with 78% yield in 2 h. To further 

explore the applications of the products 3, we subsequently 

performed reactions between 3 and 4 under basic conditions. We 

found that 1,2,4-triazoles with alkyl groups on the “N” site can be 

obtained with good to excellent yields, irrespective of the electronic 

and steric nature of the substituents on the benzene ring of 3 and 4 

(Table 3). 

When we were exploring the [3+2] cyclization reactions under 

visible light, the desired 1,2,4-triazoles can be obtained stirring for a 

longer time. Encouraged by the result, we then continued to 

explore the direct aromatization of 3 induced by visible light under 

photoredox catalysis. After screening the conditions of the reaction, 

the reaction was efficiently catalyzed by I in the air with 99% yield 

(in Ar, 35% yield), affording the corresponding product with high  

Table 3. Substrates scope of the tri-substituted 1,2,4-triazoles.
a
 

 

a
Unless otherwise noted, the reactions were carried out with 3 (0.05 mmol) and 

4 (0.10 mmol) using NaH (0.10 mmol) in THF. 
b
the regioselectivity ratio 

determined by 
1
H-NMR. 

c
the reactions were carried out with 3b (0.05 mmol) and 

4 (0.10 mmol) using NaH (0.10 mmol) in THF. 
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yield in 1 h (See SI). Next, we investigated the influences of different 

substituents, including ethyl ester, isopropyl ester and benzyl ester, 

on the “N” of 3. All of the reactions proceeded well and furnished 

the corresponding products with high yields within a short time 

period. After the investigation of the electronic and steric nature of 

the substituents on the benzene ring of 3, higher yields were 

obtained when electron-withdrawing groups were present on the 

benzene ring. By contrast, electron-donating groups, such as a 

methoxyl, were detrimental to the reactions, as only 34% yield and 

35% yield could be obtained (Table 4, 6h, 6l). Meanwhile, the 

naphthyl groups were also tolerated. Furthermore, we also 

explored the direct synthesis of 1,2,4-triazoles induced by the blue 

LED via one step without any operations, 80% yield of 6a was 

yielded by stirring for a longer time (Scheme 2A). 

To gain insights into the aromatization of 3, we added TEMPO to 

the reaction. However, only 35% yield was obtained after stirring 

for 24 h, which suggested that the reaction included a radical step. 

Though other oxidants were also tested in order to illustrate the 

importance of this method, only DDQ could oxidize substrate 3a, 

resulting in 88% yield over a long reaction time (24 h). Thus, 

photoredox catalysis under visible light is critical for the 

aromatization of 3a. Notably, 6a could be easily transformed using 

LiAlH4 into the biologically active molecule 7,
10

 which has contra 

gestational activity. The subsequent methylation of 7 affords 8,
11

 

which has antibacterial activity. We also attempted the asymmetric 

reaction between 1a and 2a using the chiral photosensitizer 9 as 

the catalyst based on the ion-pair strategy;
12 

however, only 20% ee  

Table 4. The scope of aromatization reactions of 3.
a
 

N
N

N

R'O2C

CO2R'

R

N
N

N

R'O2C

R
I (5 mol%)

10 W Blue LED,

DCE, 25 oC, air

N
N

N

EtO2C
N
N

N

iPrO2C

N
N

N

BnO2C
N
N

N

EtO2C

3 6

N
N

N

EtO2C
N
N

N

EtO2C

N
N

N

EtO2C
N
N

N

EtO2C

N
N

N

EtO2C
N
N

N

EtO2C

N
N

N

EtO2C

N
N

N

EtO2C

N
N

N

EtO2C

N
N

N

EtO2C

N
N

N

EtO2C

N
N

N

EtO2C
N
N

N

EtO2C
N
N

N

EtO2C

6a, 99% yield, 1 h 6b, 75% yield, 1 h 6c, 81% yield, 0.5 h

Me

6d, 65% yield, 1 h, 1.3:1b

F Cl Br MeO

6e, 86% yield, 2 h, 1.3:1b 6f, 91% yield, 3.5 h, 1.2:1b 6g, 88% yield, 1 h, 1.5:1b 6h, 34% yield, 0.5 h, > 20:1b

F
Cl Me

OMe

6i, 60% yield, 2 h, 1.5:1b 6j, 93% yield, 2.5 h, 1.5:1b 6k, 88% yield, 2 h, 1.3:1b

6l, 35% yield, 0.5 h, 1.2:1b 6m, 95% yield, 3 h, > 20:1b 6n, 55% yield, 1 h, > 20:1b

6p, 72% yield, 0.5 h, > 20:1b 6q, 41% yield, 1 h, > 20:1b

Me F

Et
Me

Me

Me

6r, 78% yield, 2 h, > 20:1b 6s, 80% yield, 0.5 h, 2:1b

N
N

N

EtO2C

6o, 98% yield, 0.5 h, 4:1b

Br

6k CCDC: 1552400

 

a
Unless otherwise noted, in all reactions, 3 (0.05 mmol) were catalyzed by I (5 

mol%) in DCE under blue LED. Supplementary crystallographic data for 6k can be 

found in CCDC 1552400.
9
 
b
the regioselectivity ratio determined by 

1
H-NMR. 

 

Scheme 2. The mechanistic study and the transformations of 6a. 

Ph

N

Ph N
NEtO2C
CO2Et

+
9 (5 mol%)

DCE, 10 W Blue LED, RT
N N

N

EtO2C
CO2Et

N
Me

Me

Me Me
O

O
P
O

O

CF3

CF3

CF3

F3C

cat. 3a, 95% yield, 20% ee
1 h

9

1a 2a

 

Scheme 3. The asymmetric [3+2] cyclization reaction. 

 
Scheme 4. The plausible reaction pathway. 

was obtained. A detailed exploration of the asymmetric reactions 

catalyzed by chiral photosensitizers is now underway in our lab. 

Based on the above results and Xiao’s work, a plausible pathway 

was proposed as shown in Scheme 4. Firstly, 2H-azrine is oxidized 

by the photoredox catalyst under the visible light, and then 2-

azaallenyl radical cation A is generated sequentially. After that, 2a 

will react with the radical cation A to form the new generated B, 

which will be reduced by a low-valent photocatalyst. The 

corresponding product 3a is obtained via the catalytic cycle, and 

then 3a is continued to be oxidized by the photoredox catalyst to 
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form the newly generated C. After the abstraction of hydrogen and 

the aromatization proceeded, the desired compound 6a is yielded. 

In summary, we have developed a novel method in which 2H-

azirines and azodicarboxylates are utilized to efficiently synthesize 

1,2,4-triazolines, with good to excellent yields, under visible light. 

The 1,2,4-triazoles could be efficiently furnished when the 1,2,4-

triazolines reacted with benzyl bromides under basic conditions or 

were directly catalyzed by photosensitizers under visible light. 

Notably, the 1,2,4-triazoles can be transformed into biologically 

active molecules via additional mild reactions. The asymmetric 

cyclization reaction was also preliminarily investigated using a chiral 

organic photosensitizer. Novel methods for synthesizing nitrogen-

containing compounds based on azodicarboxylates under visible 

light are being developed in our lab, and our findings will be 

reported in due course. 
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1,2,4-triazolines and 1,2,4-triazoles can be synthesized under the visible light via one step 

without additional operations, which can be also scaled up to gram-level. 
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